

Welcome to People’s Reinforcement Learning (PRL) documentation!

Our main goal is to build a useful tool for the reinforcement learning researchers.

While using PRL library for building agents and conducting experiments you
can focus on a structure of an agent, state transformations, neural networks
architecture, action transformations and reward shaping. Time and memory profiling,
logging, agent-environment interactions, agent state saving,
neural network training, early stopping or training visualization
happens automatically behind the scenes. You are also provided
with very useful tools for handling training history and preparing training sets for
neural networks.

People’s Reinforcement Learning (PRL)

[image:]
 [https://img.shields.io/badge/python-3.6-blue.svg][image:]
 [https://img.shields.io/badge/code%20style-black-000000.svg][image:]
 [https://readthedocs.org/projects/prl/badge/?version=latest]
Description

This is a reinforcement learning framework made with research activity in mind.
You can read mode about PRL in our
blogpost [https://medium.com/asap-report/prl-a-novel-approach-to-building-a-reinforcement-learning-framework-in-python-208cb8ae9349?sk=ea595f44fc8bd3f2aa4416c997d16891],
documentation [https://prl.readthedocs.io/en/latest/index.html] or
wiki [https://gitlab.com/opium-sh/prl/wikis/home].

System requirements

	python 3.6

	swig

	python3-dev

We recommend using virtualenv for installing project dependencies.

Installation

	clone the project:

git clone git@gitlab.com:opium-sh/prl.git

	create and activate a virtualenv for the project (you can skip this step if you are not using virtualenv)

virtualenv -p python3.6 your/path && source your/path/bin/activate

	install dependencies:

pip install -r requirements.txt

	install library

pip install -e .

	run example:

cd examples
python cart_pole_example_cross_entropy.py

API documentation

Information on specific functions, classes, and methods.

prl

	prl package
	Subpackages
	prl.agents package
	Submodules

	prl.agents.agents module

	Module contents

	prl.callbacks package
	Submodules

	prl.callbacks.callbacks module

	Module contents

	prl.environments package
	Submodules

	prl.environments.environments module

	Module contents

	prl.function_approximators package
	Submodules

	prl.function_approximators.function_approximators module

	prl.function_approximators.pytorch_nn module

	Module contents

	prl.storage package
	Submodules

	prl.storage.storage module

	Module contents

	prl.transformers package
	Submodules

	prl.transformers.action_transformers module

	prl.transformers.reward_transformers module

	prl.transformers.state_transformers module

	Module contents

	prl.utils package
	Submodules

	prl.utils.loggers module

	prl.utils.misc module

	prl.utils.utils module

	Module contents

	Submodules

	prl.typing module

	Module contents

prl package

Subpackages

	prl.agents package
	Submodules

	prl.agents.agents module

	Module contents

	prl.callbacks package
	Submodules

	prl.callbacks.callbacks module

	Module contents

	prl.environments package
	Submodules

	prl.environments.environments module

	Module contents

	prl.function_approximators package
	Submodules

	prl.function_approximators.function_approximators module

	prl.function_approximators.pytorch_nn module

	Module contents

	prl.storage package
	Submodules

	prl.storage.storage module

	Module contents

	prl.transformers package
	Submodules

	prl.transformers.action_transformers module

	prl.transformers.reward_transformers module

	prl.transformers.state_transformers module

	Module contents

	prl.utils package
	Submodules

	prl.utils.loggers module

	prl.utils.misc module

	prl.utils.utils module

	Module contents

Submodules

prl.typing module

	
class ActionTransformerABC

	Bases: abc.ABC

	
action_space(original_space)

	
	Return type

	Space

	
id

	
	Return type

	str

	
reset()

	

	
transform(action, history)

	
	Return type

	ndarray

	
class AdvantageABC

	Bases: abc.ABC

	
class AgentABC

	Bases: abc.ABC

	
act(state)

	

	
id

	
	Return type

	str

	
play_episodes(env, episodes)

	
	Return type

	HistoryABC

	
play_steps(env, n_steps, history)

	
	Return type

	HistoryABC

	
post_train_cleanup(env, **kwargs)

	

	
pre_train_setup(env, **kwargs)

	

	
test(env)

	
	Return type

	HistoryABC

	
train(env, n_iterations, callback_list, **kwargs)

	

	
train_iteration(env, **kwargs)

	
	Return type

	(<class ‘float’>, <class ‘prl.typing.HistoryABC’>)

	
class AgentCallbackABC

	Bases: abc.ABC

	
on_iteration_end(agent)

	
	Return type

	bool

	
on_training_begin(agent)

	

	
on_training_end(agent)

	

	
class EnvironmentABC

	Bases: abc.ABC

	
action_space

	
	Return type

	Space

	
action_transformer

	
	Return type

	ActionTransformerABC

	
close()

	

	
id

	

	
observation_space

	
	Return type

	Space

	
reset()

	
	Return type

	ndarray

	
reward_transformer

	
	Return type

	RewardTransformerABC

	
state_history

	
	Return type

	HistoryABC

	
state_transformer

	
	Return type

	StateTransformerABC

	
step(action)

	
	Return type

	Tuple[ndarray, Real, bool, Dict[~KT, ~VT]]

	
class FunctionApproximatorABC

	Bases: abc.ABC

	
id

	
	Return type

	str

	
predict(x)

	

	
train(x, *loss_args)

	
	Return type

	float

	
class HistoryABC

	Bases: abc.ABC

	
get_actions()

	
	Return type

	ndarray

	
get_dones()

	
	Return type

	ndarray

	
get_last_state()

	
	Return type

	ndarray

	
get_number_of_episodes()

	
	Return type

	int

	
get_returns(discount_factor, horizon)

	
	Return type

	ndarray

	
get_rewards()

	
	Return type

	ndarray

	
get_states()

	
	Return type

	ndarray

	
get_summary()

	

	
get_total_rewards()

	
	Return type

	ndarray

	
new_state_update(state)

	

	
sample_batch(replay_buffor_size, batch_size, returns, next_states)

	
	Return type

	tuple

	
update(action, reward, done, state)

	

	
MemoryABC

	alias of prl.typing.StorageABC

	
class PytorchNetABC(*args, **kwargs)

	Bases: sphinx.ext.autodoc.importer._MockObject

	
forward(x)

	

	
predict(x)

	

	
class RewardTransformerABC

	Bases: abc.ABC

	
id

	
	Return type

	str

	
reset()

	

	
transform(reward, history)

	
	Return type

	Real

	
class StateTransformerABC

	Bases: abc.ABC

	
id

	
	Return type

	str

	
reset()

	

	
transform(state, history)

	
	Return type

	ndarray

	
class StorageABC

	Bases: abc.ABC

	
get_actions()

	
	Return type

	ndarray

	
get_dones()

	
	Return type

	ndarray

	
get_last_state()

	
	Return type

	ndarray

	
get_rewards()

	
	Return type

	ndarray

	
get_states()

	
	Return type

	ndarray

	
new_state_update(state)

	

	
sample_batch(replay_buffor_size, batch_size, returns, next_states)

	
	Return type

	tuple

	
update(action, reward, done, state)

	

Module contents

prl.agents package

Submodules

prl.agents.agents module

	
class A2CAdvantage

	Bases: prl.agents.agents.Advantage

Advantage function from Asynchronous Methods for Deep Reinforcement Learning.

	
calculate_advantages(rewards, baselines, dones, discount_factor)

	
	Return type

	ndarray

	
class A2CAgent(policy_network, value_network, agent_id='A2C_agent')

	Bases: prl.agents.agents.ActorCriticAgent

Advantage Actor Critic agent.

	
class ActorCriticAgent(policy_network, value_network, advantage, agent_id='ActorCritic_agent')

	Bases: prl.agents.agents.Agent

Basic actor-critic agent.

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
train_iteration(env, n_steps=32, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class Advantage

	Bases: prl.typing.AdvantageABC, abc.ABC

Base class for advantage functions.

	
calculate_advantages(rewards, baselines, dones, discount_factor)

	
	Return type

	ndarray

	
class Agent

	Bases: prl.typing.AgentABC, abc.ABC

Base class for all agents

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	Return type

	str

	
play_episodes(env, episodes)

	Method for playing full episodes used usually to train agents.

	Parameters

	
	env (Environment) – Environment

	episodes (int) – Number of episodes to play.

	Return type

	History

	Returns

	History object representing episodes history

	
play_steps(env, n_steps, storage)

	Method for performing some number of steps in the environments. Appends new
states to existing storage
:type env: Environment
:param env: Environment
:type n_steps: int
:param n_steps: Number of steps to play
:type storage: Storage
:param storage: Storage (Memory, History) of the earlier games (used to perform first action)

	Return type

	Storage

	Returns

	History with appended states, actions, rewards, etc

	
post_train_cleanup(env, **kwargs)

	Performs cleaning up fields that are no longer needed after training to keep
agent lightweight.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
pre_train_setup(env, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
test(env)

	Method for playing full episode used to test agents. Reward in the returned history is
the true reward from the environments. This method is used mostly for testing the agent.

	Parameters

	env – Environment

	Return type

	History

	Returns

	History object representing episode history

	
train(env, n_iterations, callback_list=None, **kwargs)

	Trains the agent using environment. Also handles callbacks during training.

	Parameters

	
	env (Environment) – Environment to train on

	n_iterations (int) – Maximum number of iterations to train

	callback_list (Optional[list]) – List of callbacks

	kwargs – other arguments passed to train_iteration, pre_train_setup and post_train_cleanup

	
train_iteration(env, **kwargs)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
class CrossEntropyAgent(policy_network, agent_id='crossentropy_agent')

	Bases: prl.agents.agents.Agent

Agent using cross entropy algorithm

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
train_iteration(env, n_episodes=32, percentile=75)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class DQNAgent(q_network, replay_buffer_size=10000, start_epsilon=1.0, end_epsilon=0.05, epsilon_decay=1000, training_set_size=64, target_network_copy_iter=100, steps_between_training=10, agent_id='DQN_agent')

	Bases: prl.agents.agents.Agent

Agent using DQN algorithm

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
pre_train_setup(env, discount_factor=1.0, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
train_iteration(env, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class GAEAdvantage(lambda_)

	Bases: prl.agents.agents.Advantage

Advantage function from High-Dimensional Continuous Control Using
Generalized Advantage Estimation.

	
calculate_advantages(rewards, baselines, dones, discount_factor)

	
	Return type

	ndarray

	
class REINFORCEAgent(policy_network, agent_id='REINFORCE_agent')

	Bases: prl.agents.agents.Agent

Agent using REINFORCE algorithm

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
pre_train_setup(env, discount_factor=1.0, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
train_iteration(env, n_episodes=32, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class RandomAgent(agent_id='random_agent', replay_buffer_size=100)

	Bases: prl.agents.agents.Agent

Agent performing random actions

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
pre_train_setup(env, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
train_iteration(env, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

Module contents

prl.callbacks package

Submodules

prl.callbacks.callbacks module

	
class AgentCallback

	Bases: prl.typing.AgentCallbackABC

Interface for Callbacks defining actions that are executed automatically during
different phases of agent training.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Return type

	bool

	Returns

	True if training should be interrupted, False otherwise

	
on_training_begin(agent)

	Method called after prl.base.Agent.pre_train_setup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called

	
on_training_end(agent)

	Method called after prl.base.Agent.post_train_cleanup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	
class BaseAgentCheckpoint(target_path, save_best_only=True, iteration_interval=1, number_of_test_runs=1)

	Bases: prl.callbacks.callbacks.AgentCallback

Saving agents during training. This is a base class that implements only logic.
One should use classes with saving method matching networks’ framework.
For more info on methods see base class.

	Parameters

	
	target_path (str) – Directory in which agents will be saved. Must exist before

	this callback. (creating) –

	save_best_only (bool) – Whether to save all models, or only the one with highest reward.

	iteration_interval (int) – Interval between calculating test reward. Using low values may make training process slower

	number_of_test_runs (int) – Number of test runs when calculating reward. Higher value averages variance out, but makes training longer.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
on_training_end(agent)

	Method called after prl.base.Agent.post_train_cleanup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	
class CallbackHandler(callback_list, env)

	Bases: object

Callback that handles all given handles. Calls appropriate methods on each callback
and aggregates break codes.
For more info on methods see base class.

	
static check_run_condition(current_count, interval)

	

	
on_iteration_end(agent)

	

	
on_training_begin(agent)

	

	
on_training_end(agent)

	

	
run_tests(agent)

	
	Return type

	HistoryABC

	
setup_callbacks()

	Sets up callbacks. This calculates optimal intervals for calling callbacks,
and for calling testing procedure.

	
class EarlyStopping(target_reward, iteration_interval=1, number_of_test_runs=1, verbose=1)

	Bases: prl.callbacks.callbacks.AgentCallback

Implements EarlyStopping for RL Agents. Training is stopped after reaching given
target reward.

	Parameters

	
	target_reward (float) – Target reward.

	iteration_interval (int) – Interval between calculating test reward.
Using low values may make training process slower.

	number_of_test_runs (int) – Number of test runs when calculating reward.
Higher value averages variance out, but makes training longer.

	verbose (int) – Whether to print message after stopping training (1), or not (0).

Note

By reward, we mean here untransformed reward given by Agent.test method.
For more info on methods see base class.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
class PyTorchAgentCheckpoint(target_path, save_best_only=True, iteration_interval=1, number_of_test_runs=1)

	Bases: prl.callbacks.callbacks.BaseAgentCheckpoint

Class for saving PyTorch-based agents. For more details, see parent class.

	
class TensorboardLogger(file_path='logs_1571907271', iteration_interval=1, number_of_test_runs=1, show_time_logs=False)

	Bases: prl.callbacks.callbacks.AgentCallback

Writes various information to tensorboard during training.
For more info on methods see base class.

	Parameters

	
	file_path (str) – Path to file with output.

	iteration_interval (int) – Interval between calculating test reward. Using low values may make training process slower.

	number_of_test_runs (int) – Number of test runs when calculating reward. Higher value averages variance out, but makes training longer.

	show_time_logs (bool) – If shows logs from time_logger.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
on_training_end(agent)

	Method called after prl.base.Agent.post_train_cleanup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	
class TrainingLogger(on_screen=True, to_file=False, file_path=None, iteration_interval=1)

	Bases: prl.callbacks.callbacks.AgentCallback

Logs training information after certain amount of iterations.
Data may appear in output, or be written into a file.
For more info on methods see base class.

	Parameters

	
	on_screen (bool) – Whether to show info in output.

	to_file (bool) – Whether to save info into a file.

	file_path (Optional[str]) – Path to file with output.

	iteration_interval (int) – How often should info be logged on screen. File output remains logged every iteration.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
class ValidationLogger(on_screen=True, to_file=False, file_path=None, iteration_interval=1, number_of_test_runs=3)

	Bases: prl.callbacks.callbacks.AgentCallback

Logs validation information after certain amount of iterations.
Data may appear in output, or be written into a file.
For more info on methods see base class.

	Parameters

	
	on_screen (bool) – Whether to show info in output.

	to_file (bool) – Whether to save info into a file.

	file_path (Optional[str]) – Path to file with output.

	iteration_interval (int) – How often should info be logged on screen. File output

	logged every iteration. (remains) –

	number_of_test_runs (int) – Number of played episodes in history’s summary logs.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

Module contents

prl.environments package

Submodules

prl.environments.environments module

	
class Environment(env, environment_id='Environment_wrapper', state_transformer=<prl.transformers.state_transformers.NoOpStateTransformer object>, reward_transformer=<prl.transformers.reward_transformers.NoOpRewardTransformer object>, action_transformer=<prl.transformers.action_transformers.NoOpActionTransformer object>, expected_episode_length=512, dump_history=False)

	Bases: prl.typing.EnvironmentABC, abc.ABC

Interface for wrappers for gym-like environments. It can use StateTransformer and
RewardTransformer to shape states and rewards to a convenient form for the agent. It can also
use ActionTransformer to change representation from the suitable to the agent to the required
by the environments.

Environment also keeps the history of current episode, so it doesn’t have to be implemented
on the agent side. All the transformers can use this history to transform states, actions
and rewards.

	Parameters

	
	env (Env) – Environment with gym like API

	environment_id (str) – ID of the env

	state_transformer (StateTransformerABC) – Object of the class StateTransformer

	reward_transformer (RewardTransformerABC) – Object of the class RewardTransformer

	action_transformer (ActionTransformerABC) – Object of the class ActionTransformer

	
action_space

	action_space object from the action_transformer

	Type

	Returns

	Return type

	Space

	
action_transformer

	Action transformers can be used to change the representation of actions like changing the
coordinate system or feeding only a difference from the last action for continuous action
space. ActionTransformer is used to change representation from the suitable to the agent
to the required by the wrapped environments.

	Return type

	ActionTransformerABC

	Returns

	ActionTransformer object

	
close()

	Cleans up and closes the environment

	
id

	Environment UUID

	
observation_space

	observation_space object from the state_transformer

	Type

	Returns

	Return type

	Space

	
reset()

	Resets the environments to initial state and returns this initial state.

	Return type

	ndarray

	Returns

	New state

	
reward_transformer

	Reward transformer object for reward shaping like taking the sign of the original reward
or adding reward for staying on track in a car racing game.

	Return type

	RewardTransformerABC

	Returns

	RewardTransformer object

	
state_history

	Current episode history

	Type

	Returns

	Return type

	HistoryABC

	
state_transformer

	StateTransformer object for state transformations. It can be used for changing
representation of the state. For example it can be used for simply subtracting constant
vector from the state, stacking the last N states or transforming image into compressed
representation using autoencoder.

	Return type

	StateTransformer

	Returns

	StateTransformer object

	
step(action)

	Transform and perform a given action in the wrapped environment. Returns
transformed states and rewards from wrapped environment.

	Parameters

	action (ndarray) – Action executed by the agent.

	Returns

	New state
reward: Reward we get from performing the action
is done: Is the simulation finished
info: Additional diagnostic information

	Return type

	observation

Note

When true_reward flag is set to True it returns non-transformed reward for the testing
purposes.

	
class FrameSkipEnvironment(env, environment_id='frameskip_gym_environment_wrapper', state_transformer=<prl.transformers.state_transformers.NoOpStateTransformer object>, reward_transformer=<prl.transformers.reward_transformers.NoOpRewardTransformer object>, action_transformer=<prl.transformers.action_transformers.NoOpActionTransformer object>, expected_episode_length=512, n_skip_frames=0, cumulative_reward=False)

	Bases: prl.environments.environments.Environment

Environment wrapper skipping frames from original environment. Action executed
by the agent is repeated on the skipped frames.

	Parameters

	
	env (Env) – Environment with gym like API

	environment_id (str) – ID of the env

	state_transformer (StateTransformer) – Object of the class StateTransformer

	reward_transformer (RewardTransformer) – Object of the class RewardTransformer

	action_transformer (ActionTransformer) – Object of the class ActionTransformer

	n_skip_frames (int) – Number of frames to skip on each step.

	cumulative_reward – If True, reward returned from step() method is cumulative reward from the skipped steps.

	
step(action)

	Transform and perform a given action in the wrapped environment. Returns
transformed states and rewards from wrapped environment.

	Parameters

	action (ndarray) – Action executed by the agent.

	Returns

	New state
reward: Reward we get from performing the action
is done: Is the simulation finished
info: Additional diagnostic information

	Return type

	observation

Note

When true_reward flag is set to True it returns non-transformed reward for the testing
purposes.

	
class TimeShiftEnvironment(env, environment_id='timeshift_gym_environment_wrapper', state_transformer=<prl.transformers.state_transformers.NoOpStateTransformer object>, reward_transformer=<prl.transformers.reward_transformers.NoOpRewardTransformer object>, action_transformer=<prl.transformers.action_transformers.NoOpActionTransformer object>, expected_episode_length=512, lag=1)

	Bases: prl.environments.environments.Environment

Environment wrapper creating lag between action passed to step() method by the agent and
action execution in the environment. First ‘lag’ actions are sampled from action_space.

	Parameters

	
	env (Env) – Environment with gym like API

	environment_id (str) – ID of the env

	state_transformer (StateTransformer) – Object of the class StateTransformer

	reward_transformer (RewardTransformer) – Object of the class RewardTransformer

	action_transformer (ActionTransformer) – Object of the class ActionTransformer (don’t use - not implemented action transformation)

Note

Class doesn’t have implemented action transformation.

	
reset()

	Resets the environments to initial state and returns this initial state.

	Return type

	ndarray

	Returns

	New state

	
step(action)

	Transform and perform a given action in the wrapped environment. Returns
transformed states and rewards from wrapped environment.

	Parameters

	action (ndarray) – Action executed by the agent.

	Returns

	New state
reward: Reward we get from performing the action
is done: Is the simulation finished
info: Additional diagnostic information

	Return type

	observation

Note

When true_reward flag is set to True it returns non-transformed reward for the testing
purposes.

	
class TransformedSpace(shape=None, dtype=None, transformed_state=None)

	Bases: gym.core.Space

Class created to handle Environments using StateTransformers as the observation space is not
directly specified in such a system.

	
contains(state)

	This method is not available as TransformedSpace object can’t estimate whether x is contained
by the state representation. It is caused because TransformedSpace object infers the state properties.

	
sample()

	Return sample state. Object of this class returns always the same object. It needs to be created every sample.
When used inside Environment with StateTransformer every call of property observation_space cause the
initialization of new object, so another sample is returned.

	Returns

	Transformed state

Module contents

prl.function_approximators package

Submodules

prl.function_approximators.function_approximators module

	
class FunctionApproximator

	Bases: prl.typing.FunctionApproximatorABC, abc.ABC

Class for function approximators used by the agents. For example it could
be a neural network for value function or policy approximation.

	
id

	Function Approximator UUID

	Return type

	str

	
predict(x)

	Makes prediction based on input

	
train(x, *loss_args)

	Trains FA for one or more steps. Returns training loss value.

	Return type

	float

prl.function_approximators.pytorch_nn module

	
class DQNLoss(mode='huber', size_average=None, reduce=None, reduction='mean')

	Bases: sphinx.ext.autodoc.importer._MockObject

	
forward(nn_outputs, actions, target_outputs)

	

	
class PolicyGradientLoss(size_average=None, reduce=None, reduction='mean')

	Bases: sphinx.ext.autodoc.importer._MockObject

	
forward(nn_outputs, actions, returns)

	

	
class PytorchConv(x_shape, hidden_sizes, y_size)

	Bases: prl.function_approximators.pytorch_nn.PytorchNet

	
forward(x)

	Defines the computation performed at every training step.

	Parameters

	x – input data

	Returns

	network output

	
predict(x)

	Makes prediction based on input data.

	Parameters

	x – input data

	Returns

	prediction for agent.act(x) method

	
class PytorchFA(net, loss, optimizer, device='cpu', batch_size=64, last_batch=True, network_id='pytorch_nn')

	Bases: prl.function_approximators.function_approximators.FunctionApproximator

Class for pytorch based neural networks function approximators.

	Parameters

	
	net (PytorchNet) – PytorchNet class neural network

	loss (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b2018cf8>) – loss function

	optimizer (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b20187f0>) – optimizer

	device (str) – device for computation: “cpu” or “cuda”

	batch_size (int) – size of a training batch

	last_batch (bool) – flag if the last batch (usually shorter than batch_size) is going to be feed into network

	network_id (str) – name of the network for debugging and logging purposes

	
convert_to_pytorch(y)

	

	
id

	Function Approximator UUID

	
predict(x)

	Makes prediction

	
train(x, *loss_args)

	Trains network on a dataset

	Parameters

	
	x (ndarray) – input array for the network

	*loss_args – arguments passed directly to loss function

	
class PytorchMLP(x_shape, y_size, output_activation, hidden_sizes)

	Bases: prl.function_approximators.pytorch_nn.PytorchNet

	
forward(x)

	Defines the computation performed at every training step.

	Parameters

	x – input data

	Returns

	network output

	
predict(x)

	Makes prediction based on input data.

	Parameters

	x – input data

	Returns

	prediction for agent.act(x) method

	
class PytorchNet(*args, **kwargs)

	Bases: prl.typing.PytorchNetABC

Neural networks for PytorchFA. It has separate predict method strictly for
Agent.act() method, wchich can act differently than forward() method.

Note

This class has two abstract methods that need to be implemented (listed above).

	
forward(x)

	Defines the computation performed at every training step.

	Parameters

	x (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b2b22208>) – input data

	Returns

	network output

	
predict(x)

	Makes prediction based on input data.

	Parameters

	x (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b2018908>) – input data

	Returns

	prediction for agent.act(x) method

Module contents

prl.storage package

Submodules

prl.storage.storage module

	
class History(initial_state, action_type, initial_length=512)

	Bases: prl.storage.storage.Storage, prl.typing.HistoryABC

An object which is used to keep the episodes history (used within Environment class
and by some agents). Agent can use this object to keep history of past episodes,
calculate returns, total rewards, etc. and sample batches from it.

Object also supports indexing and slicing because it supports python Sequence protocol,
so functions working on sequences like random.choice can be also used on history.

	Parameters

	
	initial_state (ndarray) – initial state from enviroment

	action_type (type) – numpy type of action (e.g. np.int32)

	initial_length (int) – initial length of a history

	
get_actions()

	Returns an array of all actions.

	Return type

	ndarray

	Returns

	array of all actions

	
get_dones()

	Returns an array of all done flags.

	Return type

	ndarray

	Returns

	array of all done flags

	
get_last_state()

	Returns only the last state.

	Return type

	ndarray

	Returns

	last state

	
get_number_of_episodes()

	Returns a number of full episodes in history.

	Return type

	int

	Returns

	number of full episodes in history

	
get_returns(discount_factor=1.0, horizon=inf)

	Calculates returns for each step.

	Return type

	ndarray

	Returns

	array of discounted returns for each step

	
get_rewards()

	Returns an array of all rewards.

	Return type

	ndarray

	Returns

	array of all rewards

	
get_states()

	Returns an array of all states.

	Return type

	ndarray

	Returns

	array of all states

	
get_summary()

	
	Return type

	(<class ‘float’>, <class ‘float’>, <class ‘int’>)

	
get_total_rewards()

	Calculates sum of all rewards for each episode and reports it for each state,
so every state in one episode has the same value of total reward. This can
be useful for filtering states for best episodes (e.g. in Cross Entropy Algorithm).

	Return type

	ndarray

	Returns

	total reward for each state

	
new_state_update(state)

	Overwrites newest state in the History

	Parameters

	state (ndarray) – state array.

	
sample_batch(replay_buffer_size, batch_size=64, returns=False, next_states=False)

	Samples batch of examples from the Storage.

	Parameters

	
	replay_buffer_size (int) – length of a replay buffor to sample examples from

	batch_size (int) – number of returned examples

	returns (bool) – if True, the method will return the returns from each step instead of the rewards

	next_states (bool) – if True, the method will return also next states (i.e. for DQN algorithm)

	Returns

	states, actions, rewards, dones, (new_states)

	Return type

	batch of samples from history in form of a tuple with np.ndarrays in order

	
update(action, reward, done, state)

	Updates the object with latest states, reward, actions and done flag.

	Parameters

	
	action (ndarray) – action executed by the agent

	reward (Real) – reward from environments

	done (bool) – done flag from environments

	state (ndarray) – new state returned by wrapped environments after executing action

	
class Memory(initial_state, action_type, maximum_length=1000)

	Bases: prl.storage.storage.Storage, prl.typing.StorageABC

An object to be used as replay buffer. Doesn’t contain full episodes and acts
as limited FIFO queue. Implemented as double size numpy arrays with duplicated data
to support very fast slicing and sampling at the cost of higher memory usage.

	Parameters

	
	initial_state (ndarray) – initial state from enviroment

	action_type – numpy type of action (e.g. np.int32)

	maximum_length (int) – maximum number of examples to keep in queue

	
clear(initial_state)

	

	
get_actions()

	Returns an array of all actions.

	Return type

	ndarray

	Returns

	array of all actions

	
get_dones()

	Returns an array of all done flags.

	Return type

	ndarray

	Returns

	array of all done flags

	
get_last_state()

	Returns only the last state.

	Return type

	ndarray

	Returns

	last state

	
get_rewards()

	Returns an array of all rewards.

	Return type

	ndarray

	Returns

	array of all rewards

	
get_states(include_last=False)

	Returns an array of all states.

	Return type

	ndarray

	Returns

	array of all states

	
new_state_update(state)

	Overwrites newest state in the History

	Parameters

	state – state array.

	
sample_batch(replay_buffor_size, batch_size=64, returns=False, next_states=False)

	Samples batch of examples from the Storage.

	Parameters

	
	replay_buffer_size – length of a replay buffor to sample examples from

	batch_size (int) – number of returned examples

	returns (bool) – if True, the method will return the returns from each step instead of the rewards

	next_states (bool) – if True, the method will return also next states (i.e. for DQN algorithm)

	Returns

	states, actions, rewards, dones, (new_states)

	Return type

	batch of samples from history in form of a tuple with np.ndarrays in order

	
update(action, reward, done, state)

	Updates the object with latest states, reward, actions and done flag.

	Parameters

	
	action – action executed by the agent

	reward – reward from environments

	done – done flag from environments

	state – new state returned by wrapped environments after executing action

	
class Storage

	Bases: prl.typing.StorageABC, abc.ABC

	
get_actions()

	Returns an array of all actions.

	Return type

	ndarray

	Returns

	array of all actions

	
get_dones()

	Returns an array of all done flags.

	Return type

	ndarray

	Returns

	array of all done flags

	
get_last_state()

	Returns only the last state.

	Return type

	ndarray

	Returns

	last state

	
get_rewards()

	Returns an array of all rewards.

	Return type

	ndarray

	Returns

	array of all rewards

	
get_states()

	Returns an array of all states.

	Return type

	ndarray

	Returns

	array of all states

	
new_state_update(state)

	Overwrites newest state in the History

	Parameters

	state – state array.

	
sample_batch(replay_buffor_size, batch_size, returns, next_states)

	Samples batch of examples from the Storage.

	Parameters

	
	replay_buffer_size – length of a replay buffor to sample examples from

	batch_size (int) – number of returned examples

	returns (bool) – if True, the method will return the returns from each step instead of the rewards

	next_states (bool) – if True, the method will return also next states (i.e. for DQN algorithm)

	Returns

	states, actions, rewards, dones, (new_states)

	Return type

	batch of samples from history in form of a tuple with np.ndarrays in order

	
update(action, reward, done, state)

	Updates the object with latest states, reward, actions and done flag.

	Parameters

	
	action – action executed by the agent

	reward – reward from environments

	done – done flag from environments

	state – new state returned by wrapped environments after executing action

	
calculate_returns(all_rewards, dones, horizon, discount_factor, _index)

	

	
calculate_total_rewards(all_rewards, dones, _index)

	

Module contents

prl.transformers package

Submodules

prl.transformers.action_transformers module

	
class ActionTransformer

	Bases: prl.typing.ActionTransformerABC, abc.ABC

Interface for raw action (original actions from agent) transformers. Object of
this class are used by the classes implementing EnvironmentABC interface. Action
transformers can use all episode history from the beginning of the episode up to the moment
of transformation.

	
action_space(original_space)

	Returns: action_space object of class gym.Space, which defines type and shape of transformed action.

Note

If transformed action is from the same action_space as original
state, then action_space is None. Information contained within action_space can
be important for agents, so it is important to properly define an action_space.

	Return type

	Space

	
id

	State transformer UUID

	Return type

	str

	
reset()

	Action transformer can be stateful, so it have to be reset after each episode.

	
transform(action, history)

	Transforms action into another representation, which must be of the form defined by
action_space object. Input action can be in a form of numpy array, list, tuple, int, etc.

	Parameters

	
	action (ndarray) – Action from the agent

	history (HistoryABC) – History object of an episode

	Return type

	ndarray

	Returns

	Transformed action in form defined by the action_space object.

	
class NoOpActionTransformer

	Bases: prl.transformers.action_transformers.ActionTransformer

ActionTransformer doing nothing

	
action_space(original_space)

	Returns: action_space object of class gym.Space, which defines type and shape of transformed action.

Note

If transformed action is from the same action_space as original
state, then action_space is None. Information contained within action_space can
be important for agents, so it is important to properly define an action_space.

	Return type

	Space

	
id

	State transformer UUID

	
reset()

	Action transformer can be stateful, so it have to be reset after each episode.

	
transform(action, history)

	Transforms action into another representation, which must be of the form defined by
action_space object. Input action can be in a form of numpy array, list, tuple, int, etc.

	Parameters

	
	action (ndarray) – Action from the agent

	history (HistoryABC) – History object of an episode

	Return type

	ndarray

	Returns

	Transformed action in form defined by the action_space object.

prl.transformers.reward_transformers module

	
class NoOpRewardTransformer

	Bases: prl.transformers.reward_transformers.RewardTransformer

RewardTransformer doing nothing

	
id()

	Reward transformer UUID

	
reset()

	Reward transformer can be stateful, so it have to be reset after each episode.

	
transform(reward, history)

	Transforms a reward.

	Parameters

	
	reward (Real) – Raw reward from the wrapped environment

	history (HistoryABC) – History object

	Return type

	Number

	Returns

	Transformed reward

	
class RewardShiftTransformer(shift)

	Bases: prl.transformers.reward_transformers.RewardTransformer

RewardTransformer shifting reward by some constant value

	
id()

	Reward transformer UUID

	
reset()

	Reward transformer can be stateful, so it have to be reset after each episode.

	
transform(reward, history)

	Transforms a reward.

	Parameters

	
	reward (Real) – Raw reward from the wrapped environment

	history (HistoryABC) – History object

	Return type

	Number

	Returns

	Transformed reward

	
class RewardTransformer

	Bases: prl.typing.RewardTransformerABC, abc.ABC

Interface for classes for shaping the raw reward from wrapped environments. Object inherited
from this class are used by the Environment class objects. Reward transformers can use all
episode history from the beginning of the episode up to the moment of transformation.

	
id

	Reward transformer UUID

	Return type

	str

	
reset()

	Reward transformer can be stateful, so it have to be reset after each episode.

	
transform(reward, history)

	Transforms a reward.

	Parameters

	
	reward (Real) – Raw reward from the wrapped environment

	history (HistoryABC) – History object

	Return type

	Real

	Returns

	Transformed reward

prl.transformers.state_transformers module

	
class NoOpStateTransformer

	Bases: prl.transformers.state_transformers.StateTransformer

StateTransformer doing nothing

	
id

	State transformer UUID

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(state, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state (ndarray) – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

	
class PongTransformer(resize_factor=2, crop=True, flatten=False)

	Bases: prl.transformers.state_transformers.StateTransformer

StateTransformer for Pong atari game

	
id

	State transformer UUID

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(observation, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

	
class StateShiftTransformer(shift_tensor)

	Bases: prl.transformers.state_transformers.StateTransformer

StateTransformer shifting reward by some constant vector

	
id

	State transformer UUID

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(state, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state (ndarray) – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

	
class StateTransformer

	Bases: prl.typing.StateTransformerABC, abc.ABC

Interface for raw states (original states from wrapped environments) transformers. Object of
this class are used by the classes implementing EnvironmentABC interface. State
transformers can use all episode history from the beginning of the episode up to the moment
of transformation.

	
id

	State transformer UUID

	Return type

	str

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(state, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state (ndarray) – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

Module contents

prl.utils package

Submodules

prl.utils.loggers module

	
class Logger

	Bases: object

Class for logging scalar values to limited queues. Logged data send to each
client is tracked by the Logger, so each client can ask for unseen data and recieve it.

	
add(key, value)

	Add a value to queue assigned to key value.

	Parameters

	
	key (str) – logged value name

	value (Number) – logged number

	
flush(consumer_id)

	Method used by clients to recieve only new unseed data from logger.

	Parameters

	consumer_id (int) – value returned by register method.

	Return type

	(typing.Dict[str, typing.List], typing.Dict[str, range], typing.Dict[str, typing.List])

	Returns

	dict with new data.

	
get_data()

	
	Return type

	Dict[str, deque]

	Returns

	all logged data.

	
register()

	Registers client in order to receive data from Logger object.

	Return type

	int

	Returns

	client ID used to identify client while requesting for a new data.

	
save(path)

	Saves data to file.

	Parameters

	path (str) – path to the file.

	
class TimeLogger

	Bases: prl.utils.loggers.Logger

Storage for measurements of function and methods exectuion time. Used by timeit function/decorator. Can be used to
print summary of a time profiling or save all data to generate a plot how execution times are changing during the
program execution.

	
limited_deque()

	Auxiliary function for Logger class.

Returns: Deque with maximum length set to DEQUE_MAX_LEN

prl.utils.misc module

	
class colors

	Bases: object

Color codes for unocode strings. Used for output string formatting.

	
BLUE = '\x1b[94m'

	

	
BOLD = '\x1b[1m'

	

	
END_FORMAT = '\x1b[0m'

	

	
GREEN = '\x1b[92m'

	

	
RED = '\x1b[91m'

	

	
UNDERLINE = '\x1b[4m'

	

	
YELLOW = '\x1b[93m'

	

prl.utils.utils module

	
timeit(func, profiled_function_name=None)

	Decorator for profiling execution time for the functions and methods. To measure time of a method or function you
have to put @timeit in line nefore function, or wrap a function in the code:

@timeit
def func(a, b, c=”1”):

pass

or in the code:

result = timeit(func, profiled_function_name=”Profiled function func”)(5,5)

To print results of measurment you have to print time_logger object from this package at the end
of the program execution. When the name of the function can be ambiguous in the profiler
data use profiled_function_name parameter.

	Parameters

	
	func – function, which execution time we wan to measure

	profiled_function_name – user defined name for the wrapped function.

	Returns

	wrapped function

Module contents

prl package

Subpackages

	prl.agents package
	Submodules

	prl.agents.agents module

	Module contents

	prl.callbacks package
	Submodules

	prl.callbacks.callbacks module

	Module contents

	prl.environments package
	Submodules

	prl.environments.environments module

	Module contents

	prl.function_approximators package
	Submodules

	prl.function_approximators.function_approximators module

	prl.function_approximators.pytorch_nn module

	Module contents

	prl.storage package
	Submodules

	prl.storage.storage module

	Module contents

	prl.transformers package
	Submodules

	prl.transformers.action_transformers module

	prl.transformers.reward_transformers module

	prl.transformers.state_transformers module

	Module contents

	prl.utils package
	Submodules

	prl.utils.loggers module

	prl.utils.misc module

	prl.utils.utils module

	Module contents

Submodules

prl.typing module

	
class ActionTransformerABC

	Bases: abc.ABC

	
action_space(original_space)

	
	Return type

	Space

	
id

	
	Return type

	str

	
reset()

	

	
transform(action, history)

	
	Return type

	ndarray

	
class AdvantageABC

	Bases: abc.ABC

	
class AgentABC

	Bases: abc.ABC

	
act(state)

	

	
id

	
	Return type

	str

	
play_episodes(env, episodes)

	
	Return type

	HistoryABC

	
play_steps(env, n_steps, history)

	
	Return type

	HistoryABC

	
post_train_cleanup(env, **kwargs)

	

	
pre_train_setup(env, **kwargs)

	

	
test(env)

	
	Return type

	HistoryABC

	
train(env, n_iterations, callback_list, **kwargs)

	

	
train_iteration(env, **kwargs)

	
	Return type

	(<class ‘float’>, <class ‘prl.typing.HistoryABC’>)

	
class AgentCallbackABC

	Bases: abc.ABC

	
on_iteration_end(agent)

	
	Return type

	bool

	
on_training_begin(agent)

	

	
on_training_end(agent)

	

	
class EnvironmentABC

	Bases: abc.ABC

	
action_space

	
	Return type

	Space

	
action_transformer

	
	Return type

	ActionTransformerABC

	
close()

	

	
id

	

	
observation_space

	
	Return type

	Space

	
reset()

	
	Return type

	ndarray

	
reward_transformer

	
	Return type

	RewardTransformerABC

	
state_history

	
	Return type

	HistoryABC

	
state_transformer

	
	Return type

	StateTransformerABC

	
step(action)

	
	Return type

	Tuple[ndarray, Real, bool, Dict[~KT, ~VT]]

	
class FunctionApproximatorABC

	Bases: abc.ABC

	
id

	
	Return type

	str

	
predict(x)

	

	
train(x, *loss_args)

	
	Return type

	float

	
class HistoryABC

	Bases: abc.ABC

	
get_actions()

	
	Return type

	ndarray

	
get_dones()

	
	Return type

	ndarray

	
get_last_state()

	
	Return type

	ndarray

	
get_number_of_episodes()

	
	Return type

	int

	
get_returns(discount_factor, horizon)

	
	Return type

	ndarray

	
get_rewards()

	
	Return type

	ndarray

	
get_states()

	
	Return type

	ndarray

	
get_summary()

	

	
get_total_rewards()

	
	Return type

	ndarray

	
new_state_update(state)

	

	
sample_batch(replay_buffor_size, batch_size, returns, next_states)

	
	Return type

	tuple

	
update(action, reward, done, state)

	

	
MemoryABC

	alias of prl.typing.StorageABC

	
class PytorchNetABC(*args, **kwargs)

	Bases: sphinx.ext.autodoc.importer._MockObject

	
forward(x)

	

	
predict(x)

	

	
class RewardTransformerABC

	Bases: abc.ABC

	
id

	
	Return type

	str

	
reset()

	

	
transform(reward, history)

	
	Return type

	Real

	
class StateTransformerABC

	Bases: abc.ABC

	
id

	
	Return type

	str

	
reset()

	

	
transform(state, history)

	
	Return type

	ndarray

	
class StorageABC

	Bases: abc.ABC

	
get_actions()

	
	Return type

	ndarray

	
get_dones()

	
	Return type

	ndarray

	
get_last_state()

	
	Return type

	ndarray

	
get_rewards()

	
	Return type

	ndarray

	
get_states()

	
	Return type

	ndarray

	
new_state_update(state)

	

	
sample_batch(replay_buffor_size, batch_size, returns, next_states)

	
	Return type

	tuple

	
update(action, reward, done, state)

	

Module contents

prl.agents package

Submodules

prl.agents.agents module

	
class A2CAdvantage

	Bases: prl.agents.agents.Advantage

Advantage function from Asynchronous Methods for Deep Reinforcement Learning.

	
calculate_advantages(rewards, baselines, dones, discount_factor)

	
	Return type

	ndarray

	
class A2CAgent(policy_network, value_network, agent_id='A2C_agent')

	Bases: prl.agents.agents.ActorCriticAgent

Advantage Actor Critic agent.

	
class ActorCriticAgent(policy_network, value_network, advantage, agent_id='ActorCritic_agent')

	Bases: prl.agents.agents.Agent

Basic actor-critic agent.

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
train_iteration(env, n_steps=32, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class Advantage

	Bases: prl.typing.AdvantageABC, abc.ABC

Base class for advantage functions.

	
calculate_advantages(rewards, baselines, dones, discount_factor)

	
	Return type

	ndarray

	
class Agent

	Bases: prl.typing.AgentABC, abc.ABC

Base class for all agents

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	Return type

	str

	
play_episodes(env, episodes)

	Method for playing full episodes used usually to train agents.

	Parameters

	
	env (Environment) – Environment

	episodes (int) – Number of episodes to play.

	Return type

	History

	Returns

	History object representing episodes history

	
play_steps(env, n_steps, storage)

	Method for performing some number of steps in the environments. Appends new
states to existing storage
:type env: Environment
:param env: Environment
:type n_steps: int
:param n_steps: Number of steps to play
:type storage: Storage
:param storage: Storage (Memory, History) of the earlier games (used to perform first action)

	Return type

	Storage

	Returns

	History with appended states, actions, rewards, etc

	
post_train_cleanup(env, **kwargs)

	Performs cleaning up fields that are no longer needed after training to keep
agent lightweight.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
pre_train_setup(env, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
test(env)

	Method for playing full episode used to test agents. Reward in the returned history is
the true reward from the environments. This method is used mostly for testing the agent.

	Parameters

	env – Environment

	Return type

	History

	Returns

	History object representing episode history

	
train(env, n_iterations, callback_list=None, **kwargs)

	Trains the agent using environment. Also handles callbacks during training.

	Parameters

	
	env (Environment) – Environment to train on

	n_iterations (int) – Maximum number of iterations to train

	callback_list (Optional[list]) – List of callbacks

	kwargs – other arguments passed to train_iteration, pre_train_setup and post_train_cleanup

	
train_iteration(env, **kwargs)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
class CrossEntropyAgent(policy_network, agent_id='crossentropy_agent')

	Bases: prl.agents.agents.Agent

Agent using cross entropy algorithm

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
train_iteration(env, n_episodes=32, percentile=75)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class DQNAgent(q_network, replay_buffer_size=10000, start_epsilon=1.0, end_epsilon=0.05, epsilon_decay=1000, training_set_size=64, target_network_copy_iter=100, steps_between_training=10, agent_id='DQN_agent')

	Bases: prl.agents.agents.Agent

Agent using DQN algorithm

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
pre_train_setup(env, discount_factor=1.0, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
train_iteration(env, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class GAEAdvantage(lambda_)

	Bases: prl.agents.agents.Advantage

Advantage function from High-Dimensional Continuous Control Using
Generalized Advantage Estimation.

	
calculate_advantages(rewards, baselines, dones, discount_factor)

	
	Return type

	ndarray

	
class REINFORCEAgent(policy_network, agent_id='REINFORCE_agent')

	Bases: prl.agents.agents.Agent

Agent using REINFORCE algorithm

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
pre_train_setup(env, discount_factor=1.0, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
train_iteration(env, n_episodes=32, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class RandomAgent(agent_id='random_agent', replay_buffer_size=100)

	Bases: prl.agents.agents.Agent

Agent performing random actions

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
pre_train_setup(env, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
train_iteration(env, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

Module contents

prl.callbacks package

Submodules

prl.callbacks.callbacks module

	
class AgentCallback

	Bases: prl.typing.AgentCallbackABC

Interface for Callbacks defining actions that are executed automatically during
different phases of agent training.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Return type

	bool

	Returns

	True if training should be interrupted, False otherwise

	
on_training_begin(agent)

	Method called after prl.base.Agent.pre_train_setup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called

	
on_training_end(agent)

	Method called after prl.base.Agent.post_train_cleanup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	
class BaseAgentCheckpoint(target_path, save_best_only=True, iteration_interval=1, number_of_test_runs=1)

	Bases: prl.callbacks.callbacks.AgentCallback

Saving agents during training. This is a base class that implements only logic.
One should use classes with saving method matching networks’ framework.
For more info on methods see base class.

	Parameters

	
	target_path (str) – Directory in which agents will be saved. Must exist before

	this callback. (creating) –

	save_best_only (bool) – Whether to save all models, or only the one with highest reward.

	iteration_interval (int) – Interval between calculating test reward. Using low values may make training process slower

	number_of_test_runs (int) – Number of test runs when calculating reward. Higher value averages variance out, but makes training longer.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
on_training_end(agent)

	Method called after prl.base.Agent.post_train_cleanup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	
class CallbackHandler(callback_list, env)

	Bases: object

Callback that handles all given handles. Calls appropriate methods on each callback
and aggregates break codes.
For more info on methods see base class.

	
static check_run_condition(current_count, interval)

	

	
on_iteration_end(agent)

	

	
on_training_begin(agent)

	

	
on_training_end(agent)

	

	
run_tests(agent)

	
	Return type

	HistoryABC

	
setup_callbacks()

	Sets up callbacks. This calculates optimal intervals for calling callbacks,
and for calling testing procedure.

	
class EarlyStopping(target_reward, iteration_interval=1, number_of_test_runs=1, verbose=1)

	Bases: prl.callbacks.callbacks.AgentCallback

Implements EarlyStopping for RL Agents. Training is stopped after reaching given
target reward.

	Parameters

	
	target_reward (float) – Target reward.

	iteration_interval (int) – Interval between calculating test reward.
Using low values may make training process slower.

	number_of_test_runs (int) – Number of test runs when calculating reward.
Higher value averages variance out, but makes training longer.

	verbose (int) – Whether to print message after stopping training (1), or not (0).

Note

By reward, we mean here untransformed reward given by Agent.test method.
For more info on methods see base class.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
class PyTorchAgentCheckpoint(target_path, save_best_only=True, iteration_interval=1, number_of_test_runs=1)

	Bases: prl.callbacks.callbacks.BaseAgentCheckpoint

Class for saving PyTorch-based agents. For more details, see parent class.

	
class TensorboardLogger(file_path='logs_1571907271', iteration_interval=1, number_of_test_runs=1, show_time_logs=False)

	Bases: prl.callbacks.callbacks.AgentCallback

Writes various information to tensorboard during training.
For more info on methods see base class.

	Parameters

	
	file_path (str) – Path to file with output.

	iteration_interval (int) – Interval between calculating test reward. Using low values may make training process slower.

	number_of_test_runs (int) – Number of test runs when calculating reward. Higher value averages variance out, but makes training longer.

	show_time_logs (bool) – If shows logs from time_logger.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
on_training_end(agent)

	Method called after prl.base.Agent.post_train_cleanup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	
class TrainingLogger(on_screen=True, to_file=False, file_path=None, iteration_interval=1)

	Bases: prl.callbacks.callbacks.AgentCallback

Logs training information after certain amount of iterations.
Data may appear in output, or be written into a file.
For more info on methods see base class.

	Parameters

	
	on_screen (bool) – Whether to show info in output.

	to_file (bool) – Whether to save info into a file.

	file_path (Optional[str]) – Path to file with output.

	iteration_interval (int) – How often should info be logged on screen. File output remains logged every iteration.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
class ValidationLogger(on_screen=True, to_file=False, file_path=None, iteration_interval=1, number_of_test_runs=3)

	Bases: prl.callbacks.callbacks.AgentCallback

Logs validation information after certain amount of iterations.
Data may appear in output, or be written into a file.
For more info on methods see base class.

	Parameters

	
	on_screen (bool) – Whether to show info in output.

	to_file (bool) – Whether to save info into a file.

	file_path (Optional[str]) – Path to file with output.

	iteration_interval (int) – How often should info be logged on screen. File output

	logged every iteration. (remains) –

	number_of_test_runs (int) – Number of played episodes in history’s summary logs.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

Module contents

prl.environments package

Submodules

prl.environments.environments module

	
class Environment(env, environment_id='Environment_wrapper', state_transformer=<prl.transformers.state_transformers.NoOpStateTransformer object>, reward_transformer=<prl.transformers.reward_transformers.NoOpRewardTransformer object>, action_transformer=<prl.transformers.action_transformers.NoOpActionTransformer object>, expected_episode_length=512, dump_history=False)

	Bases: prl.typing.EnvironmentABC, abc.ABC

Interface for wrappers for gym-like environments. It can use StateTransformer and
RewardTransformer to shape states and rewards to a convenient form for the agent. It can also
use ActionTransformer to change representation from the suitable to the agent to the required
by the environments.

Environment also keeps the history of current episode, so it doesn’t have to be implemented
on the agent side. All the transformers can use this history to transform states, actions
and rewards.

	Parameters

	
	env (Env) – Environment with gym like API

	environment_id (str) – ID of the env

	state_transformer (StateTransformerABC) – Object of the class StateTransformer

	reward_transformer (RewardTransformerABC) – Object of the class RewardTransformer

	action_transformer (ActionTransformerABC) – Object of the class ActionTransformer

	
action_space

	action_space object from the action_transformer

	Type

	Returns

	Return type

	Space

	
action_transformer

	Action transformers can be used to change the representation of actions like changing the
coordinate system or feeding only a difference from the last action for continuous action
space. ActionTransformer is used to change representation from the suitable to the agent
to the required by the wrapped environments.

	Return type

	ActionTransformerABC

	Returns

	ActionTransformer object

	
close()

	Cleans up and closes the environment

	
id

	Environment UUID

	
observation_space

	observation_space object from the state_transformer

	Type

	Returns

	Return type

	Space

	
reset()

	Resets the environments to initial state and returns this initial state.

	Return type

	ndarray

	Returns

	New state

	
reward_transformer

	Reward transformer object for reward shaping like taking the sign of the original reward
or adding reward for staying on track in a car racing game.

	Return type

	RewardTransformerABC

	Returns

	RewardTransformer object

	
state_history

	Current episode history

	Type

	Returns

	Return type

	HistoryABC

	
state_transformer

	StateTransformer object for state transformations. It can be used for changing
representation of the state. For example it can be used for simply subtracting constant
vector from the state, stacking the last N states or transforming image into compressed
representation using autoencoder.

	Return type

	StateTransformer

	Returns

	StateTransformer object

	
step(action)

	Transform and perform a given action in the wrapped environment. Returns
transformed states and rewards from wrapped environment.

	Parameters

	action (ndarray) – Action executed by the agent.

	Returns

	New state
reward: Reward we get from performing the action
is done: Is the simulation finished
info: Additional diagnostic information

	Return type

	observation

Note

When true_reward flag is set to True it returns non-transformed reward for the testing
purposes.

	
class FrameSkipEnvironment(env, environment_id='frameskip_gym_environment_wrapper', state_transformer=<prl.transformers.state_transformers.NoOpStateTransformer object>, reward_transformer=<prl.transformers.reward_transformers.NoOpRewardTransformer object>, action_transformer=<prl.transformers.action_transformers.NoOpActionTransformer object>, expected_episode_length=512, n_skip_frames=0, cumulative_reward=False)

	Bases: prl.environments.environments.Environment

Environment wrapper skipping frames from original environment. Action executed
by the agent is repeated on the skipped frames.

	Parameters

	
	env (Env) – Environment with gym like API

	environment_id (str) – ID of the env

	state_transformer (StateTransformer) – Object of the class StateTransformer

	reward_transformer (RewardTransformer) – Object of the class RewardTransformer

	action_transformer (ActionTransformer) – Object of the class ActionTransformer

	n_skip_frames (int) – Number of frames to skip on each step.

	cumulative_reward – If True, reward returned from step() method is cumulative reward from the skipped steps.

	
step(action)

	Transform and perform a given action in the wrapped environment. Returns
transformed states and rewards from wrapped environment.

	Parameters

	action (ndarray) – Action executed by the agent.

	Returns

	New state
reward: Reward we get from performing the action
is done: Is the simulation finished
info: Additional diagnostic information

	Return type

	observation

Note

When true_reward flag is set to True it returns non-transformed reward for the testing
purposes.

	
class TimeShiftEnvironment(env, environment_id='timeshift_gym_environment_wrapper', state_transformer=<prl.transformers.state_transformers.NoOpStateTransformer object>, reward_transformer=<prl.transformers.reward_transformers.NoOpRewardTransformer object>, action_transformer=<prl.transformers.action_transformers.NoOpActionTransformer object>, expected_episode_length=512, lag=1)

	Bases: prl.environments.environments.Environment

Environment wrapper creating lag between action passed to step() method by the agent and
action execution in the environment. First ‘lag’ actions are sampled from action_space.

	Parameters

	
	env (Env) – Environment with gym like API

	environment_id (str) – ID of the env

	state_transformer (StateTransformer) – Object of the class StateTransformer

	reward_transformer (RewardTransformer) – Object of the class RewardTransformer

	action_transformer (ActionTransformer) – Object of the class ActionTransformer (don’t use - not implemented action transformation)

Note

Class doesn’t have implemented action transformation.

	
reset()

	Resets the environments to initial state and returns this initial state.

	Return type

	ndarray

	Returns

	New state

	
step(action)

	Transform and perform a given action in the wrapped environment. Returns
transformed states and rewards from wrapped environment.

	Parameters

	action (ndarray) – Action executed by the agent.

	Returns

	New state
reward: Reward we get from performing the action
is done: Is the simulation finished
info: Additional diagnostic information

	Return type

	observation

Note

When true_reward flag is set to True it returns non-transformed reward for the testing
purposes.

	
class TransformedSpace(shape=None, dtype=None, transformed_state=None)

	Bases: gym.core.Space

Class created to handle Environments using StateTransformers as the observation space is not
directly specified in such a system.

	
contains(state)

	This method is not available as TransformedSpace object can’t estimate whether x is contained
by the state representation. It is caused because TransformedSpace object infers the state properties.

	
sample()

	Return sample state. Object of this class returns always the same object. It needs to be created every sample.
When used inside Environment with StateTransformer every call of property observation_space cause the
initialization of new object, so another sample is returned.

	Returns

	Transformed state

Module contents

prl.function_approximators package

Submodules

prl.function_approximators.function_approximators module

	
class FunctionApproximator

	Bases: prl.typing.FunctionApproximatorABC, abc.ABC

Class for function approximators used by the agents. For example it could
be a neural network for value function or policy approximation.

	
id

	Function Approximator UUID

	Return type

	str

	
predict(x)

	Makes prediction based on input

	
train(x, *loss_args)

	Trains FA for one or more steps. Returns training loss value.

	Return type

	float

prl.function_approximators.pytorch_nn module

	
class DQNLoss(mode='huber', size_average=None, reduce=None, reduction='mean')

	Bases: sphinx.ext.autodoc.importer._MockObject

	
forward(nn_outputs, actions, target_outputs)

	

	
class PolicyGradientLoss(size_average=None, reduce=None, reduction='mean')

	Bases: sphinx.ext.autodoc.importer._MockObject

	
forward(nn_outputs, actions, returns)

	

	
class PytorchConv(x_shape, hidden_sizes, y_size)

	Bases: prl.function_approximators.pytorch_nn.PytorchNet

	
forward(x)

	Defines the computation performed at every training step.

	Parameters

	x – input data

	Returns

	network output

	
predict(x)

	Makes prediction based on input data.

	Parameters

	x – input data

	Returns

	prediction for agent.act(x) method

	
class PytorchFA(net, loss, optimizer, device='cpu', batch_size=64, last_batch=True, network_id='pytorch_nn')

	Bases: prl.function_approximators.function_approximators.FunctionApproximator

Class for pytorch based neural networks function approximators.

	Parameters

	
	net (PytorchNet) – PytorchNet class neural network

	loss (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b2018cf8>) – loss function

	optimizer (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b20187f0>) – optimizer

	device (str) – device for computation: “cpu” or “cuda”

	batch_size (int) – size of a training batch

	last_batch (bool) – flag if the last batch (usually shorter than batch_size) is going to be feed into network

	network_id (str) – name of the network for debugging and logging purposes

	
convert_to_pytorch(y)

	

	
id

	Function Approximator UUID

	
predict(x)

	Makes prediction

	
train(x, *loss_args)

	Trains network on a dataset

	Parameters

	
	x (ndarray) – input array for the network

	*loss_args – arguments passed directly to loss function

	
class PytorchMLP(x_shape, y_size, output_activation, hidden_sizes)

	Bases: prl.function_approximators.pytorch_nn.PytorchNet

	
forward(x)

	Defines the computation performed at every training step.

	Parameters

	x – input data

	Returns

	network output

	
predict(x)

	Makes prediction based on input data.

	Parameters

	x – input data

	Returns

	prediction for agent.act(x) method

	
class PytorchNet(*args, **kwargs)

	Bases: prl.typing.PytorchNetABC

Neural networks for PytorchFA. It has separate predict method strictly for
Agent.act() method, wchich can act differently than forward() method.

Note

This class has two abstract methods that need to be implemented (listed above).

	
forward(x)

	Defines the computation performed at every training step.

	Parameters

	x (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b2b22208>) – input data

	Returns

	network output

	
predict(x)

	Makes prediction based on input data.

	Parameters

	x (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b2018908>) – input data

	Returns

	prediction for agent.act(x) method

Module contents

prl.storage package

Submodules

prl.storage.storage module

	
class History(initial_state, action_type, initial_length=512)

	Bases: prl.storage.storage.Storage, prl.typing.HistoryABC

An object which is used to keep the episodes history (used within Environment class
and by some agents). Agent can use this object to keep history of past episodes,
calculate returns, total rewards, etc. and sample batches from it.

Object also supports indexing and slicing because it supports python Sequence protocol,
so functions working on sequences like random.choice can be also used on history.

	Parameters

	
	initial_state (ndarray) – initial state from enviroment

	action_type (type) – numpy type of action (e.g. np.int32)

	initial_length (int) – initial length of a history

	
get_actions()

	Returns an array of all actions.

	Return type

	ndarray

	Returns

	array of all actions

	
get_dones()

	Returns an array of all done flags.

	Return type

	ndarray

	Returns

	array of all done flags

	
get_last_state()

	Returns only the last state.

	Return type

	ndarray

	Returns

	last state

	
get_number_of_episodes()

	Returns a number of full episodes in history.

	Return type

	int

	Returns

	number of full episodes in history

	
get_returns(discount_factor=1.0, horizon=inf)

	Calculates returns for each step.

	Return type

	ndarray

	Returns

	array of discounted returns for each step

	
get_rewards()

	Returns an array of all rewards.

	Return type

	ndarray

	Returns

	array of all rewards

	
get_states()

	Returns an array of all states.

	Return type

	ndarray

	Returns

	array of all states

	
get_summary()

	
	Return type

	(<class ‘float’>, <class ‘float’>, <class ‘int’>)

	
get_total_rewards()

	Calculates sum of all rewards for each episode and reports it for each state,
so every state in one episode has the same value of total reward. This can
be useful for filtering states for best episodes (e.g. in Cross Entropy Algorithm).

	Return type

	ndarray

	Returns

	total reward for each state

	
new_state_update(state)

	Overwrites newest state in the History

	Parameters

	state (ndarray) – state array.

	
sample_batch(replay_buffer_size, batch_size=64, returns=False, next_states=False)

	Samples batch of examples from the Storage.

	Parameters

	
	replay_buffer_size (int) – length of a replay buffor to sample examples from

	batch_size (int) – number of returned examples

	returns (bool) – if True, the method will return the returns from each step instead of the rewards

	next_states (bool) – if True, the method will return also next states (i.e. for DQN algorithm)

	Returns

	states, actions, rewards, dones, (new_states)

	Return type

	batch of samples from history in form of a tuple with np.ndarrays in order

	
update(action, reward, done, state)

	Updates the object with latest states, reward, actions and done flag.

	Parameters

	
	action (ndarray) – action executed by the agent

	reward (Real) – reward from environments

	done (bool) – done flag from environments

	state (ndarray) – new state returned by wrapped environments after executing action

	
class Memory(initial_state, action_type, maximum_length=1000)

	Bases: prl.storage.storage.Storage, prl.typing.StorageABC

An object to be used as replay buffer. Doesn’t contain full episodes and acts
as limited FIFO queue. Implemented as double size numpy arrays with duplicated data
to support very fast slicing and sampling at the cost of higher memory usage.

	Parameters

	
	initial_state (ndarray) – initial state from enviroment

	action_type – numpy type of action (e.g. np.int32)

	maximum_length (int) – maximum number of examples to keep in queue

	
clear(initial_state)

	

	
get_actions()

	Returns an array of all actions.

	Return type

	ndarray

	Returns

	array of all actions

	
get_dones()

	Returns an array of all done flags.

	Return type

	ndarray

	Returns

	array of all done flags

	
get_last_state()

	Returns only the last state.

	Return type

	ndarray

	Returns

	last state

	
get_rewards()

	Returns an array of all rewards.

	Return type

	ndarray

	Returns

	array of all rewards

	
get_states(include_last=False)

	Returns an array of all states.

	Return type

	ndarray

	Returns

	array of all states

	
new_state_update(state)

	Overwrites newest state in the History

	Parameters

	state – state array.

	
sample_batch(replay_buffor_size, batch_size=64, returns=False, next_states=False)

	Samples batch of examples from the Storage.

	Parameters

	
	replay_buffer_size – length of a replay buffor to sample examples from

	batch_size (int) – number of returned examples

	returns (bool) – if True, the method will return the returns from each step instead of the rewards

	next_states (bool) – if True, the method will return also next states (i.e. for DQN algorithm)

	Returns

	states, actions, rewards, dones, (new_states)

	Return type

	batch of samples from history in form of a tuple with np.ndarrays in order

	
update(action, reward, done, state)

	Updates the object with latest states, reward, actions and done flag.

	Parameters

	
	action – action executed by the agent

	reward – reward from environments

	done – done flag from environments

	state – new state returned by wrapped environments after executing action

	
class Storage

	Bases: prl.typing.StorageABC, abc.ABC

	
get_actions()

	Returns an array of all actions.

	Return type

	ndarray

	Returns

	array of all actions

	
get_dones()

	Returns an array of all done flags.

	Return type

	ndarray

	Returns

	array of all done flags

	
get_last_state()

	Returns only the last state.

	Return type

	ndarray

	Returns

	last state

	
get_rewards()

	Returns an array of all rewards.

	Return type

	ndarray

	Returns

	array of all rewards

	
get_states()

	Returns an array of all states.

	Return type

	ndarray

	Returns

	array of all states

	
new_state_update(state)

	Overwrites newest state in the History

	Parameters

	state – state array.

	
sample_batch(replay_buffor_size, batch_size, returns, next_states)

	Samples batch of examples from the Storage.

	Parameters

	
	replay_buffer_size – length of a replay buffor to sample examples from

	batch_size (int) – number of returned examples

	returns (bool) – if True, the method will return the returns from each step instead of the rewards

	next_states (bool) – if True, the method will return also next states (i.e. for DQN algorithm)

	Returns

	states, actions, rewards, dones, (new_states)

	Return type

	batch of samples from history in form of a tuple with np.ndarrays in order

	
update(action, reward, done, state)

	Updates the object with latest states, reward, actions and done flag.

	Parameters

	
	action – action executed by the agent

	reward – reward from environments

	done – done flag from environments

	state – new state returned by wrapped environments after executing action

	
calculate_returns(all_rewards, dones, horizon, discount_factor, _index)

	

	
calculate_total_rewards(all_rewards, dones, _index)

	

Module contents

prl.transformers package

Submodules

prl.transformers.action_transformers module

	
class ActionTransformer

	Bases: prl.typing.ActionTransformerABC, abc.ABC

Interface for raw action (original actions from agent) transformers. Object of
this class are used by the classes implementing EnvironmentABC interface. Action
transformers can use all episode history from the beginning of the episode up to the moment
of transformation.

	
action_space(original_space)

	Returns: action_space object of class gym.Space, which defines type and shape of transformed action.

Note

If transformed action is from the same action_space as original
state, then action_space is None. Information contained within action_space can
be important for agents, so it is important to properly define an action_space.

	Return type

	Space

	
id

	State transformer UUID

	Return type

	str

	
reset()

	Action transformer can be stateful, so it have to be reset after each episode.

	
transform(action, history)

	Transforms action into another representation, which must be of the form defined by
action_space object. Input action can be in a form of numpy array, list, tuple, int, etc.

	Parameters

	
	action (ndarray) – Action from the agent

	history (HistoryABC) – History object of an episode

	Return type

	ndarray

	Returns

	Transformed action in form defined by the action_space object.

	
class NoOpActionTransformer

	Bases: prl.transformers.action_transformers.ActionTransformer

ActionTransformer doing nothing

	
action_space(original_space)

	Returns: action_space object of class gym.Space, which defines type and shape of transformed action.

Note

If transformed action is from the same action_space as original
state, then action_space is None. Information contained within action_space can
be important for agents, so it is important to properly define an action_space.

	Return type

	Space

	
id

	State transformer UUID

	
reset()

	Action transformer can be stateful, so it have to be reset after each episode.

	
transform(action, history)

	Transforms action into another representation, which must be of the form defined by
action_space object. Input action can be in a form of numpy array, list, tuple, int, etc.

	Parameters

	
	action (ndarray) – Action from the agent

	history (HistoryABC) – History object of an episode

	Return type

	ndarray

	Returns

	Transformed action in form defined by the action_space object.

prl.transformers.reward_transformers module

	
class NoOpRewardTransformer

	Bases: prl.transformers.reward_transformers.RewardTransformer

RewardTransformer doing nothing

	
id()

	Reward transformer UUID

	
reset()

	Reward transformer can be stateful, so it have to be reset after each episode.

	
transform(reward, history)

	Transforms a reward.

	Parameters

	
	reward (Real) – Raw reward from the wrapped environment

	history (HistoryABC) – History object

	Return type

	Number

	Returns

	Transformed reward

	
class RewardShiftTransformer(shift)

	Bases: prl.transformers.reward_transformers.RewardTransformer

RewardTransformer shifting reward by some constant value

	
id()

	Reward transformer UUID

	
reset()

	Reward transformer can be stateful, so it have to be reset after each episode.

	
transform(reward, history)

	Transforms a reward.

	Parameters

	
	reward (Real) – Raw reward from the wrapped environment

	history (HistoryABC) – History object

	Return type

	Number

	Returns

	Transformed reward

	
class RewardTransformer

	Bases: prl.typing.RewardTransformerABC, abc.ABC

Interface for classes for shaping the raw reward from wrapped environments. Object inherited
from this class are used by the Environment class objects. Reward transformers can use all
episode history from the beginning of the episode up to the moment of transformation.

	
id

	Reward transformer UUID

	Return type

	str

	
reset()

	Reward transformer can be stateful, so it have to be reset after each episode.

	
transform(reward, history)

	Transforms a reward.

	Parameters

	
	reward (Real) – Raw reward from the wrapped environment

	history (HistoryABC) – History object

	Return type

	Real

	Returns

	Transformed reward

prl.transformers.state_transformers module

	
class NoOpStateTransformer

	Bases: prl.transformers.state_transformers.StateTransformer

StateTransformer doing nothing

	
id

	State transformer UUID

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(state, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state (ndarray) – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

	
class PongTransformer(resize_factor=2, crop=True, flatten=False)

	Bases: prl.transformers.state_transformers.StateTransformer

StateTransformer for Pong atari game

	
id

	State transformer UUID

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(observation, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

	
class StateShiftTransformer(shift_tensor)

	Bases: prl.transformers.state_transformers.StateTransformer

StateTransformer shifting reward by some constant vector

	
id

	State transformer UUID

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(state, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state (ndarray) – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

	
class StateTransformer

	Bases: prl.typing.StateTransformerABC, abc.ABC

Interface for raw states (original states from wrapped environments) transformers. Object of
this class are used by the classes implementing EnvironmentABC interface. State
transformers can use all episode history from the beginning of the episode up to the moment
of transformation.

	
id

	State transformer UUID

	Return type

	str

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(state, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state (ndarray) – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

Module contents

prl.utils package

Submodules

prl.utils.loggers module

	
class Logger

	Bases: object

Class for logging scalar values to limited queues. Logged data send to each
client is tracked by the Logger, so each client can ask for unseen data and recieve it.

	
add(key, value)

	Add a value to queue assigned to key value.

	Parameters

	
	key (str) – logged value name

	value (Number) – logged number

	
flush(consumer_id)

	Method used by clients to recieve only new unseed data from logger.

	Parameters

	consumer_id (int) – value returned by register method.

	Return type

	(typing.Dict[str, typing.List], typing.Dict[str, range], typing.Dict[str, typing.List])

	Returns

	dict with new data.

	
get_data()

	
	Return type

	Dict[str, deque]

	Returns

	all logged data.

	
register()

	Registers client in order to receive data from Logger object.

	Return type

	int

	Returns

	client ID used to identify client while requesting for a new data.

	
save(path)

	Saves data to file.

	Parameters

	path (str) – path to the file.

	
class TimeLogger

	Bases: prl.utils.loggers.Logger

Storage for measurements of function and methods exectuion time. Used by timeit function/decorator. Can be used to
print summary of a time profiling or save all data to generate a plot how execution times are changing during the
program execution.

	
limited_deque()

	Auxiliary function for Logger class.

Returns: Deque with maximum length set to DEQUE_MAX_LEN

prl.utils.misc module

	
class colors

	Bases: object

Color codes for unocode strings. Used for output string formatting.

	
BLUE = '\x1b[94m'

	

	
BOLD = '\x1b[1m'

	

	
END_FORMAT = '\x1b[0m'

	

	
GREEN = '\x1b[92m'

	

	
RED = '\x1b[91m'

	

	
UNDERLINE = '\x1b[4m'

	

	
YELLOW = '\x1b[93m'

	

prl.utils.utils module

	
timeit(func, profiled_function_name=None)

	Decorator for profiling execution time for the functions and methods. To measure time of a method or function you
have to put @timeit in line nefore function, or wrap a function in the code:

@timeit
def func(a, b, c=”1”):

pass

or in the code:

result = timeit(func, profiled_function_name=”Profiled function func”)(5,5)

To print results of measurment you have to print time_logger object from this package at the end
of the program execution. When the name of the function can be ambiguous in the profiler
data use profiled_function_name parameter.

	Parameters

	
	func – function, which execution time we wan to measure

	profiled_function_name – user defined name for the wrapped function.

	Returns

	wrapped function

Module contents

prl.agents package

Submodules

prl.agents.agents module

	
class A2CAdvantage

	Bases: prl.agents.agents.Advantage

Advantage function from Asynchronous Methods for Deep Reinforcement Learning.

	
calculate_advantages(rewards, baselines, dones, discount_factor)

	
	Return type

	ndarray

	
class A2CAgent(policy_network, value_network, agent_id='A2C_agent')

	Bases: prl.agents.agents.ActorCriticAgent

Advantage Actor Critic agent.

	
class ActorCriticAgent(policy_network, value_network, advantage, agent_id='ActorCritic_agent')

	Bases: prl.agents.agents.Agent

Basic actor-critic agent.

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
train_iteration(env, n_steps=32, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class Advantage

	Bases: prl.typing.AdvantageABC, abc.ABC

Base class for advantage functions.

	
calculate_advantages(rewards, baselines, dones, discount_factor)

	
	Return type

	ndarray

	
class Agent

	Bases: prl.typing.AgentABC, abc.ABC

Base class for all agents

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	Return type

	str

	
play_episodes(env, episodes)

	Method for playing full episodes used usually to train agents.

	Parameters

	
	env (Environment) – Environment

	episodes (int) – Number of episodes to play.

	Return type

	History

	Returns

	History object representing episodes history

	
play_steps(env, n_steps, storage)

	Method for performing some number of steps in the environments. Appends new
states to existing storage
:type env: Environment
:param env: Environment
:type n_steps: int
:param n_steps: Number of steps to play
:type storage: Storage
:param storage: Storage (Memory, History) of the earlier games (used to perform first action)

	Return type

	Storage

	Returns

	History with appended states, actions, rewards, etc

	
post_train_cleanup(env, **kwargs)

	Performs cleaning up fields that are no longer needed after training to keep
agent lightweight.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
pre_train_setup(env, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
test(env)

	Method for playing full episode used to test agents. Reward in the returned history is
the true reward from the environments. This method is used mostly for testing the agent.

	Parameters

	env – Environment

	Return type

	History

	Returns

	History object representing episode history

	
train(env, n_iterations, callback_list=None, **kwargs)

	Trains the agent using environment. Also handles callbacks during training.

	Parameters

	
	env (Environment) – Environment to train on

	n_iterations (int) – Maximum number of iterations to train

	callback_list (Optional[list]) – List of callbacks

	kwargs – other arguments passed to train_iteration, pre_train_setup and post_train_cleanup

	
train_iteration(env, **kwargs)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
class CrossEntropyAgent(policy_network, agent_id='crossentropy_agent')

	Bases: prl.agents.agents.Agent

Agent using cross entropy algorithm

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
train_iteration(env, n_episodes=32, percentile=75)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class DQNAgent(q_network, replay_buffer_size=10000, start_epsilon=1.0, end_epsilon=0.05, epsilon_decay=1000, training_set_size=64, target_network_copy_iter=100, steps_between_training=10, agent_id='DQN_agent')

	Bases: prl.agents.agents.Agent

Agent using DQN algorithm

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
pre_train_setup(env, discount_factor=1.0, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
train_iteration(env, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class GAEAdvantage(lambda_)

	Bases: prl.agents.agents.Advantage

Advantage function from High-Dimensional Continuous Control Using
Generalized Advantage Estimation.

	
calculate_advantages(rewards, baselines, dones, discount_factor)

	
	Return type

	ndarray

	
class REINFORCEAgent(policy_network, agent_id='REINFORCE_agent')

	Bases: prl.agents.agents.Agent

Agent using REINFORCE algorithm

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Return type

	ndarray

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
pre_train_setup(env, discount_factor=1.0, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
train_iteration(env, n_episodes=32, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (EnvironmentABC) – Environment

	**kwargs – Kwargs passed from train() method

	
class RandomAgent(agent_id='random_agent', replay_buffer_size=100)

	Bases: prl.agents.agents.Agent

Agent performing random actions

	
act(state)

	Makes a step based on current environments state

	Parameters

	state (ndarray) – state from the environment.

	Returns

	Action to execute on the environment.

	
id

	Agent UUID

	
pre_train_setup(env, **kwargs)

	Performs pre-training setup. This method should handle non-repeatable part of
training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

	
train_iteration(env, discount_factor=1.0)

	Performs single training iteration. This method should contain repeatable
part of training an agent.

	Parameters

	
	env (Environment) – Environment

	**kwargs – Kwargs passed from train() method

Module contents

prl.callbacks package

Submodules

prl.callbacks.callbacks module

	
class AgentCallback

	Bases: prl.typing.AgentCallbackABC

Interface for Callbacks defining actions that are executed automatically during
different phases of agent training.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Return type

	bool

	Returns

	True if training should be interrupted, False otherwise

	
on_training_begin(agent)

	Method called after prl.base.Agent.pre_train_setup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called

	
on_training_end(agent)

	Method called after prl.base.Agent.post_train_cleanup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	
class BaseAgentCheckpoint(target_path, save_best_only=True, iteration_interval=1, number_of_test_runs=1)

	Bases: prl.callbacks.callbacks.AgentCallback

Saving agents during training. This is a base class that implements only logic.
One should use classes with saving method matching networks’ framework.
For more info on methods see base class.

	Parameters

	
	target_path (str) – Directory in which agents will be saved. Must exist before

	this callback. (creating) –

	save_best_only (bool) – Whether to save all models, or only the one with highest reward.

	iteration_interval (int) – Interval between calculating test reward. Using low values may make training process slower

	number_of_test_runs (int) – Number of test runs when calculating reward. Higher value averages variance out, but makes training longer.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
on_training_end(agent)

	Method called after prl.base.Agent.post_train_cleanup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	
class CallbackHandler(callback_list, env)

	Bases: object

Callback that handles all given handles. Calls appropriate methods on each callback
and aggregates break codes.
For more info on methods see base class.

	
static check_run_condition(current_count, interval)

	

	
on_iteration_end(agent)

	

	
on_training_begin(agent)

	

	
on_training_end(agent)

	

	
run_tests(agent)

	
	Return type

	HistoryABC

	
setup_callbacks()

	Sets up callbacks. This calculates optimal intervals for calling callbacks,
and for calling testing procedure.

	
class EarlyStopping(target_reward, iteration_interval=1, number_of_test_runs=1, verbose=1)

	Bases: prl.callbacks.callbacks.AgentCallback

Implements EarlyStopping for RL Agents. Training is stopped after reaching given
target reward.

	Parameters

	
	target_reward (float) – Target reward.

	iteration_interval (int) – Interval between calculating test reward.
Using low values may make training process slower.

	number_of_test_runs (int) – Number of test runs when calculating reward.
Higher value averages variance out, but makes training longer.

	verbose (int) – Whether to print message after stopping training (1), or not (0).

Note

By reward, we mean here untransformed reward given by Agent.test method.
For more info on methods see base class.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
class PyTorchAgentCheckpoint(target_path, save_best_only=True, iteration_interval=1, number_of_test_runs=1)

	Bases: prl.callbacks.callbacks.BaseAgentCheckpoint

Class for saving PyTorch-based agents. For more details, see parent class.

	
class TensorboardLogger(file_path='logs_1571907271', iteration_interval=1, number_of_test_runs=1, show_time_logs=False)

	Bases: prl.callbacks.callbacks.AgentCallback

Writes various information to tensorboard during training.
For more info on methods see base class.

	Parameters

	
	file_path (str) – Path to file with output.

	iteration_interval (int) – Interval between calculating test reward. Using low values may make training process slower.

	number_of_test_runs (int) – Number of test runs when calculating reward. Higher value averages variance out, but makes training longer.

	show_time_logs (bool) – If shows logs from time_logger.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
on_training_end(agent)

	Method called after prl.base.Agent.post_train_cleanup.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	
class TrainingLogger(on_screen=True, to_file=False, file_path=None, iteration_interval=1)

	Bases: prl.callbacks.callbacks.AgentCallback

Logs training information after certain amount of iterations.
Data may appear in output, or be written into a file.
For more info on methods see base class.

	Parameters

	
	on_screen (bool) – Whether to show info in output.

	to_file (bool) – Whether to save info into a file.

	file_path (Optional[str]) – Path to file with output.

	iteration_interval (int) – How often should info be logged on screen. File output remains logged every iteration.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

	
class ValidationLogger(on_screen=True, to_file=False, file_path=None, iteration_interval=1, number_of_test_runs=3)

	Bases: prl.callbacks.callbacks.AgentCallback

Logs validation information after certain amount of iterations.
Data may appear in output, or be written into a file.
For more info on methods see base class.

	Parameters

	
	on_screen (bool) – Whether to show info in output.

	to_file (bool) – Whether to save info into a file.

	file_path (Optional[str]) – Path to file with output.

	iteration_interval (int) – How often should info be logged on screen. File output

	logged every iteration. (remains) –

	number_of_test_runs (int) – Number of played episodes in history’s summary logs.

	
on_iteration_end(agent)

	Method called at the end of every iteration in prl.base.Agent.train method.

	Parameters

	agent (AgentABC) – Agent in which this callback is called.

	Returns

	True if training should be interrupted, False otherwise

Module contents

prl.environments package

Submodules

prl.environments.environments module

	
class Environment(env, environment_id='Environment_wrapper', state_transformer=<prl.transformers.state_transformers.NoOpStateTransformer object>, reward_transformer=<prl.transformers.reward_transformers.NoOpRewardTransformer object>, action_transformer=<prl.transformers.action_transformers.NoOpActionTransformer object>, expected_episode_length=512, dump_history=False)

	Bases: prl.typing.EnvironmentABC, abc.ABC

Interface for wrappers for gym-like environments. It can use StateTransformer and
RewardTransformer to shape states and rewards to a convenient form for the agent. It can also
use ActionTransformer to change representation from the suitable to the agent to the required
by the environments.

Environment also keeps the history of current episode, so it doesn’t have to be implemented
on the agent side. All the transformers can use this history to transform states, actions
and rewards.

	Parameters

	
	env (Env) – Environment with gym like API

	environment_id (str) – ID of the env

	state_transformer (StateTransformerABC) – Object of the class StateTransformer

	reward_transformer (RewardTransformerABC) – Object of the class RewardTransformer

	action_transformer (ActionTransformerABC) – Object of the class ActionTransformer

	
action_space

	action_space object from the action_transformer

	Type

	Returns

	Return type

	Space

	
action_transformer

	Action transformers can be used to change the representation of actions like changing the
coordinate system or feeding only a difference from the last action for continuous action
space. ActionTransformer is used to change representation from the suitable to the agent
to the required by the wrapped environments.

	Return type

	ActionTransformerABC

	Returns

	ActionTransformer object

	
close()

	Cleans up and closes the environment

	
id

	Environment UUID

	
observation_space

	observation_space object from the state_transformer

	Type

	Returns

	Return type

	Space

	
reset()

	Resets the environments to initial state and returns this initial state.

	Return type

	ndarray

	Returns

	New state

	
reward_transformer

	Reward transformer object for reward shaping like taking the sign of the original reward
or adding reward for staying on track in a car racing game.

	Return type

	RewardTransformerABC

	Returns

	RewardTransformer object

	
state_history

	Current episode history

	Type

	Returns

	Return type

	HistoryABC

	
state_transformer

	StateTransformer object for state transformations. It can be used for changing
representation of the state. For example it can be used for simply subtracting constant
vector from the state, stacking the last N states or transforming image into compressed
representation using autoencoder.

	Return type

	StateTransformer

	Returns

	StateTransformer object

	
step(action)

	Transform and perform a given action in the wrapped environment. Returns
transformed states and rewards from wrapped environment.

	Parameters

	action (ndarray) – Action executed by the agent.

	Returns

	New state
reward: Reward we get from performing the action
is done: Is the simulation finished
info: Additional diagnostic information

	Return type

	observation

Note

When true_reward flag is set to True it returns non-transformed reward for the testing
purposes.

	
class FrameSkipEnvironment(env, environment_id='frameskip_gym_environment_wrapper', state_transformer=<prl.transformers.state_transformers.NoOpStateTransformer object>, reward_transformer=<prl.transformers.reward_transformers.NoOpRewardTransformer object>, action_transformer=<prl.transformers.action_transformers.NoOpActionTransformer object>, expected_episode_length=512, n_skip_frames=0, cumulative_reward=False)

	Bases: prl.environments.environments.Environment

Environment wrapper skipping frames from original environment. Action executed
by the agent is repeated on the skipped frames.

	Parameters

	
	env (Env) – Environment with gym like API

	environment_id (str) – ID of the env

	state_transformer (StateTransformer) – Object of the class StateTransformer

	reward_transformer (RewardTransformer) – Object of the class RewardTransformer

	action_transformer (ActionTransformer) – Object of the class ActionTransformer

	n_skip_frames (int) – Number of frames to skip on each step.

	cumulative_reward – If True, reward returned from step() method is cumulative reward from the skipped steps.

	
step(action)

	Transform and perform a given action in the wrapped environment. Returns
transformed states and rewards from wrapped environment.

	Parameters

	action (ndarray) – Action executed by the agent.

	Returns

	New state
reward: Reward we get from performing the action
is done: Is the simulation finished
info: Additional diagnostic information

	Return type

	observation

Note

When true_reward flag is set to True it returns non-transformed reward for the testing
purposes.

	
class TimeShiftEnvironment(env, environment_id='timeshift_gym_environment_wrapper', state_transformer=<prl.transformers.state_transformers.NoOpStateTransformer object>, reward_transformer=<prl.transformers.reward_transformers.NoOpRewardTransformer object>, action_transformer=<prl.transformers.action_transformers.NoOpActionTransformer object>, expected_episode_length=512, lag=1)

	Bases: prl.environments.environments.Environment

Environment wrapper creating lag between action passed to step() method by the agent and
action execution in the environment. First ‘lag’ actions are sampled from action_space.

	Parameters

	
	env (Env) – Environment with gym like API

	environment_id (str) – ID of the env

	state_transformer (StateTransformer) – Object of the class StateTransformer

	reward_transformer (RewardTransformer) – Object of the class RewardTransformer

	action_transformer (ActionTransformer) – Object of the class ActionTransformer (don’t use - not implemented action transformation)

Note

Class doesn’t have implemented action transformation.

	
reset()

	Resets the environments to initial state and returns this initial state.

	Return type

	ndarray

	Returns

	New state

	
step(action)

	Transform and perform a given action in the wrapped environment. Returns
transformed states and rewards from wrapped environment.

	Parameters

	action (ndarray) – Action executed by the agent.

	Returns

	New state
reward: Reward we get from performing the action
is done: Is the simulation finished
info: Additional diagnostic information

	Return type

	observation

Note

When true_reward flag is set to True it returns non-transformed reward for the testing
purposes.

	
class TransformedSpace(shape=None, dtype=None, transformed_state=None)

	Bases: gym.core.Space

Class created to handle Environments using StateTransformers as the observation space is not
directly specified in such a system.

	
contains(state)

	This method is not available as TransformedSpace object can’t estimate whether x is contained
by the state representation. It is caused because TransformedSpace object infers the state properties.

	
sample()

	Return sample state. Object of this class returns always the same object. It needs to be created every sample.
When used inside Environment with StateTransformer every call of property observation_space cause the
initialization of new object, so another sample is returned.

	Returns

	Transformed state

Module contents

prl.function_approximators package

Submodules

prl.function_approximators.function_approximators module

	
class FunctionApproximator

	Bases: prl.typing.FunctionApproximatorABC, abc.ABC

Class for function approximators used by the agents. For example it could
be a neural network for value function or policy approximation.

	
id

	Function Approximator UUID

	Return type

	str

	
predict(x)

	Makes prediction based on input

	
train(x, *loss_args)

	Trains FA for one or more steps. Returns training loss value.

	Return type

	float

prl.function_approximators.pytorch_nn module

	
class DQNLoss(mode='huber', size_average=None, reduce=None, reduction='mean')

	Bases: sphinx.ext.autodoc.importer._MockObject

	
forward(nn_outputs, actions, target_outputs)

	

	
class PolicyGradientLoss(size_average=None, reduce=None, reduction='mean')

	Bases: sphinx.ext.autodoc.importer._MockObject

	
forward(nn_outputs, actions, returns)

	

	
class PytorchConv(x_shape, hidden_sizes, y_size)

	Bases: prl.function_approximators.pytorch_nn.PytorchNet

	
forward(x)

	Defines the computation performed at every training step.

	Parameters

	x – input data

	Returns

	network output

	
predict(x)

	Makes prediction based on input data.

	Parameters

	x – input data

	Returns

	prediction for agent.act(x) method

	
class PytorchFA(net, loss, optimizer, device='cpu', batch_size=64, last_batch=True, network_id='pytorch_nn')

	Bases: prl.function_approximators.function_approximators.FunctionApproximator

Class for pytorch based neural networks function approximators.

	Parameters

	
	net (PytorchNet) – PytorchNet class neural network

	loss (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b2018cf8>) – loss function

	optimizer (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b20187f0>) – optimizer

	device (str) – device for computation: “cpu” or “cuda”

	batch_size (int) – size of a training batch

	last_batch (bool) – flag if the last batch (usually shorter than batch_size) is going to be feed into network

	network_id (str) – name of the network for debugging and logging purposes

	
convert_to_pytorch(y)

	

	
id

	Function Approximator UUID

	
predict(x)

	Makes prediction

	
train(x, *loss_args)

	Trains network on a dataset

	Parameters

	
	x (ndarray) – input array for the network

	*loss_args – arguments passed directly to loss function

	
class PytorchMLP(x_shape, y_size, output_activation, hidden_sizes)

	Bases: prl.function_approximators.pytorch_nn.PytorchNet

	
forward(x)

	Defines the computation performed at every training step.

	Parameters

	x – input data

	Returns

	network output

	
predict(x)

	Makes prediction based on input data.

	Parameters

	x – input data

	Returns

	prediction for agent.act(x) method

	
class PytorchNet(*args, **kwargs)

	Bases: prl.typing.PytorchNetABC

Neural networks for PytorchFA. It has separate predict method strictly for
Agent.act() method, wchich can act differently than forward() method.

Note

This class has two abstract methods that need to be implemented (listed above).

	
forward(x)

	Defines the computation performed at every training step.

	Parameters

	x (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b2b22208>) – input data

	Returns

	network output

	
predict(x)

	Makes prediction based on input data.

	Parameters

	x (<sphinx.ext.autodoc.importer._MockObject object at 0x7f24b2018908>) – input data

	Returns

	prediction for agent.act(x) method

Module contents

prl.storage package

Submodules

prl.storage.storage module

	
class History(initial_state, action_type, initial_length=512)

	Bases: prl.storage.storage.Storage, prl.typing.HistoryABC

An object which is used to keep the episodes history (used within Environment class
and by some agents). Agent can use this object to keep history of past episodes,
calculate returns, total rewards, etc. and sample batches from it.

Object also supports indexing and slicing because it supports python Sequence protocol,
so functions working on sequences like random.choice can be also used on history.

	Parameters

	
	initial_state (ndarray) – initial state from enviroment

	action_type (type) – numpy type of action (e.g. np.int32)

	initial_length (int) – initial length of a history

	
get_actions()

	Returns an array of all actions.

	Return type

	ndarray

	Returns

	array of all actions

	
get_dones()

	Returns an array of all done flags.

	Return type

	ndarray

	Returns

	array of all done flags

	
get_last_state()

	Returns only the last state.

	Return type

	ndarray

	Returns

	last state

	
get_number_of_episodes()

	Returns a number of full episodes in history.

	Return type

	int

	Returns

	number of full episodes in history

	
get_returns(discount_factor=1.0, horizon=inf)

	Calculates returns for each step.

	Return type

	ndarray

	Returns

	array of discounted returns for each step

	
get_rewards()

	Returns an array of all rewards.

	Return type

	ndarray

	Returns

	array of all rewards

	
get_states()

	Returns an array of all states.

	Return type

	ndarray

	Returns

	array of all states

	
get_summary()

	
	Return type

	(<class ‘float’>, <class ‘float’>, <class ‘int’>)

	
get_total_rewards()

	Calculates sum of all rewards for each episode and reports it for each state,
so every state in one episode has the same value of total reward. This can
be useful for filtering states for best episodes (e.g. in Cross Entropy Algorithm).

	Return type

	ndarray

	Returns

	total reward for each state

	
new_state_update(state)

	Overwrites newest state in the History

	Parameters

	state (ndarray) – state array.

	
sample_batch(replay_buffer_size, batch_size=64, returns=False, next_states=False)

	Samples batch of examples from the Storage.

	Parameters

	
	replay_buffer_size (int) – length of a replay buffor to sample examples from

	batch_size (int) – number of returned examples

	returns (bool) – if True, the method will return the returns from each step instead of the rewards

	next_states (bool) – if True, the method will return also next states (i.e. for DQN algorithm)

	Returns

	states, actions, rewards, dones, (new_states)

	Return type

	batch of samples from history in form of a tuple with np.ndarrays in order

	
update(action, reward, done, state)

	Updates the object with latest states, reward, actions and done flag.

	Parameters

	
	action (ndarray) – action executed by the agent

	reward (Real) – reward from environments

	done (bool) – done flag from environments

	state (ndarray) – new state returned by wrapped environments after executing action

	
class Memory(initial_state, action_type, maximum_length=1000)

	Bases: prl.storage.storage.Storage, prl.typing.StorageABC

An object to be used as replay buffer. Doesn’t contain full episodes and acts
as limited FIFO queue. Implemented as double size numpy arrays with duplicated data
to support very fast slicing and sampling at the cost of higher memory usage.

	Parameters

	
	initial_state (ndarray) – initial state from enviroment

	action_type – numpy type of action (e.g. np.int32)

	maximum_length (int) – maximum number of examples to keep in queue

	
clear(initial_state)

	

	
get_actions()

	Returns an array of all actions.

	Return type

	ndarray

	Returns

	array of all actions

	
get_dones()

	Returns an array of all done flags.

	Return type

	ndarray

	Returns

	array of all done flags

	
get_last_state()

	Returns only the last state.

	Return type

	ndarray

	Returns

	last state

	
get_rewards()

	Returns an array of all rewards.

	Return type

	ndarray

	Returns

	array of all rewards

	
get_states(include_last=False)

	Returns an array of all states.

	Return type

	ndarray

	Returns

	array of all states

	
new_state_update(state)

	Overwrites newest state in the History

	Parameters

	state – state array.

	
sample_batch(replay_buffor_size, batch_size=64, returns=False, next_states=False)

	Samples batch of examples from the Storage.

	Parameters

	
	replay_buffer_size – length of a replay buffor to sample examples from

	batch_size (int) – number of returned examples

	returns (bool) – if True, the method will return the returns from each step instead of the rewards

	next_states (bool) – if True, the method will return also next states (i.e. for DQN algorithm)

	Returns

	states, actions, rewards, dones, (new_states)

	Return type

	batch of samples from history in form of a tuple with np.ndarrays in order

	
update(action, reward, done, state)

	Updates the object with latest states, reward, actions and done flag.

	Parameters

	
	action – action executed by the agent

	reward – reward from environments

	done – done flag from environments

	state – new state returned by wrapped environments after executing action

	
class Storage

	Bases: prl.typing.StorageABC, abc.ABC

	
get_actions()

	Returns an array of all actions.

	Return type

	ndarray

	Returns

	array of all actions

	
get_dones()

	Returns an array of all done flags.

	Return type

	ndarray

	Returns

	array of all done flags

	
get_last_state()

	Returns only the last state.

	Return type

	ndarray

	Returns

	last state

	
get_rewards()

	Returns an array of all rewards.

	Return type

	ndarray

	Returns

	array of all rewards

	
get_states()

	Returns an array of all states.

	Return type

	ndarray

	Returns

	array of all states

	
new_state_update(state)

	Overwrites newest state in the History

	Parameters

	state – state array.

	
sample_batch(replay_buffor_size, batch_size, returns, next_states)

	Samples batch of examples from the Storage.

	Parameters

	
	replay_buffer_size – length of a replay buffor to sample examples from

	batch_size (int) – number of returned examples

	returns (bool) – if True, the method will return the returns from each step instead of the rewards

	next_states (bool) – if True, the method will return also next states (i.e. for DQN algorithm)

	Returns

	states, actions, rewards, dones, (new_states)

	Return type

	batch of samples from history in form of a tuple with np.ndarrays in order

	
update(action, reward, done, state)

	Updates the object with latest states, reward, actions and done flag.

	Parameters

	
	action – action executed by the agent

	reward – reward from environments

	done – done flag from environments

	state – new state returned by wrapped environments after executing action

	
calculate_returns(all_rewards, dones, horizon, discount_factor, _index)

	

	
calculate_total_rewards(all_rewards, dones, _index)

	

Module contents

prl.transformers package

Submodules

prl.transformers.action_transformers module

	
class ActionTransformer

	Bases: prl.typing.ActionTransformerABC, abc.ABC

Interface for raw action (original actions from agent) transformers. Object of
this class are used by the classes implementing EnvironmentABC interface. Action
transformers can use all episode history from the beginning of the episode up to the moment
of transformation.

	
action_space(original_space)

	Returns: action_space object of class gym.Space, which defines type and shape of transformed action.

Note

If transformed action is from the same action_space as original
state, then action_space is None. Information contained within action_space can
be important for agents, so it is important to properly define an action_space.

	Return type

	Space

	
id

	State transformer UUID

	Return type

	str

	
reset()

	Action transformer can be stateful, so it have to be reset after each episode.

	
transform(action, history)

	Transforms action into another representation, which must be of the form defined by
action_space object. Input action can be in a form of numpy array, list, tuple, int, etc.

	Parameters

	
	action (ndarray) – Action from the agent

	history (HistoryABC) – History object of an episode

	Return type

	ndarray

	Returns

	Transformed action in form defined by the action_space object.

	
class NoOpActionTransformer

	Bases: prl.transformers.action_transformers.ActionTransformer

ActionTransformer doing nothing

	
action_space(original_space)

	Returns: action_space object of class gym.Space, which defines type and shape of transformed action.

Note

If transformed action is from the same action_space as original
state, then action_space is None. Information contained within action_space can
be important for agents, so it is important to properly define an action_space.

	Return type

	Space

	
id

	State transformer UUID

	
reset()

	Action transformer can be stateful, so it have to be reset after each episode.

	
transform(action, history)

	Transforms action into another representation, which must be of the form defined by
action_space object. Input action can be in a form of numpy array, list, tuple, int, etc.

	Parameters

	
	action (ndarray) – Action from the agent

	history (HistoryABC) – History object of an episode

	Return type

	ndarray

	Returns

	Transformed action in form defined by the action_space object.

prl.transformers.reward_transformers module

	
class NoOpRewardTransformer

	Bases: prl.transformers.reward_transformers.RewardTransformer

RewardTransformer doing nothing

	
id()

	Reward transformer UUID

	
reset()

	Reward transformer can be stateful, so it have to be reset after each episode.

	
transform(reward, history)

	Transforms a reward.

	Parameters

	
	reward (Real) – Raw reward from the wrapped environment

	history (HistoryABC) – History object

	Return type

	Number

	Returns

	Transformed reward

	
class RewardShiftTransformer(shift)

	Bases: prl.transformers.reward_transformers.RewardTransformer

RewardTransformer shifting reward by some constant value

	
id()

	Reward transformer UUID

	
reset()

	Reward transformer can be stateful, so it have to be reset after each episode.

	
transform(reward, history)

	Transforms a reward.

	Parameters

	
	reward (Real) – Raw reward from the wrapped environment

	history (HistoryABC) – History object

	Return type

	Number

	Returns

	Transformed reward

	
class RewardTransformer

	Bases: prl.typing.RewardTransformerABC, abc.ABC

Interface for classes for shaping the raw reward from wrapped environments. Object inherited
from this class are used by the Environment class objects. Reward transformers can use all
episode history from the beginning of the episode up to the moment of transformation.

	
id

	Reward transformer UUID

	Return type

	str

	
reset()

	Reward transformer can be stateful, so it have to be reset after each episode.

	
transform(reward, history)

	Transforms a reward.

	Parameters

	
	reward (Real) – Raw reward from the wrapped environment

	history (HistoryABC) – History object

	Return type

	Real

	Returns

	Transformed reward

prl.transformers.state_transformers module

	
class NoOpStateTransformer

	Bases: prl.transformers.state_transformers.StateTransformer

StateTransformer doing nothing

	
id

	State transformer UUID

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(state, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state (ndarray) – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

	
class PongTransformer(resize_factor=2, crop=True, flatten=False)

	Bases: prl.transformers.state_transformers.StateTransformer

StateTransformer for Pong atari game

	
id

	State transformer UUID

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(observation, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

	
class StateShiftTransformer(shift_tensor)

	Bases: prl.transformers.state_transformers.StateTransformer

StateTransformer shifting reward by some constant vector

	
id

	State transformer UUID

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(state, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state (ndarray) – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

	
class StateTransformer

	Bases: prl.typing.StateTransformerABC, abc.ABC

Interface for raw states (original states from wrapped environments) transformers. Object of
this class are used by the classes implementing EnvironmentABC interface. State
transformers can use all episode history from the beginning of the episode up to the moment
of transformation.

	
id

	State transformer UUID

	Return type

	str

	
reset()

	State transformer can be stateful, so it have to be reset after each episode.

	
transform(state, history)

	Transforms observed state into another representation, which must be of the form defined by
observation_space object. Input state must be in a form of numpy.ndarray.

	Parameters

	
	state (ndarray) – State from wrapped environment

	history (HistoryABC) – History object

	Return type

	ndarray

	Returns

	Transformed state in form defined by the observation_space object.

Module contents

prl.utils package

Submodules

prl.utils.loggers module

	
class Logger

	Bases: object

Class for logging scalar values to limited queues. Logged data send to each
client is tracked by the Logger, so each client can ask for unseen data and recieve it.

	
add(key, value)

	Add a value to queue assigned to key value.

	Parameters

	
	key (str) – logged value name

	value (Number) – logged number

	
flush(consumer_id)

	Method used by clients to recieve only new unseed data from logger.

	Parameters

	consumer_id (int) – value returned by register method.

	Return type

	(typing.Dict[str, typing.List], typing.Dict[str, range], typing.Dict[str, typing.List])

	Returns

	dict with new data.

	
get_data()

	
	Return type

	Dict[str, deque]

	Returns

	all logged data.

	
register()

	Registers client in order to receive data from Logger object.

	Return type

	int

	Returns

	client ID used to identify client while requesting for a new data.

	
save(path)

	Saves data to file.

	Parameters

	path (str) – path to the file.

	
class TimeLogger

	Bases: prl.utils.loggers.Logger

Storage for measurements of function and methods exectuion time. Used by timeit function/decorator. Can be used to
print summary of a time profiling or save all data to generate a plot how execution times are changing during the
program execution.

	
limited_deque()

	Auxiliary function for Logger class.

Returns: Deque with maximum length set to DEQUE_MAX_LEN

prl.utils.misc module

	
class colors

	Bases: object

Color codes for unocode strings. Used for output string formatting.

	
BLUE = '\x1b[94m'

	

	
BOLD = '\x1b[1m'

	

	
END_FORMAT = '\x1b[0m'

	

	
GREEN = '\x1b[92m'

	

	
RED = '\x1b[91m'

	

	
UNDERLINE = '\x1b[4m'

	

	
YELLOW = '\x1b[93m'

	

prl.utils.utils module

	
timeit(func, profiled_function_name=None)

	Decorator for profiling execution time for the functions and methods. To measure time of a method or function you
have to put @timeit in line nefore function, or wrap a function in the code:

@timeit
def func(a, b, c=”1”):

pass

or in the code:

result = timeit(func, profiled_function_name=”Profiled function func”)(5,5)

To print results of measurment you have to print time_logger object from this package at the end
of the program execution. When the name of the function can be ambiguous in the profiler
data use profiled_function_name parameter.

	Parameters

	
	func – function, which execution time we wan to measure

	profiled_function_name – user defined name for the wrapped function.

	Returns

	wrapped function

Module contents

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 prl	

 	
 	
 prl.agents	

 	
 	
 prl.agents.agents	

 	
 	
 prl.callbacks	

 	
 	
 prl.callbacks.callbacks	

 	
 	
 prl.environments	

 	
 	
 prl.environments.environments	

 	
 	
 prl.function_approximators	

 	
 	
 prl.function_approximators.function_approximators	

 	
 	
 prl.function_approximators.pytorch_nn	

 	
 	
 prl.storage	

 	
 	
 prl.storage.storage	

 	
 	
 prl.transformers	

 	
 	
 prl.transformers.action_transformers	

 	
 	
 prl.transformers.reward_transformers	

 	
 	
 prl.transformers.state_transformers	

 	
 	
 prl.typing	

 	
 	
 prl.utils	

 	
 	
 prl.utils.loggers	

 	
 	
 prl.utils.misc	

 	
 	
 prl.utils.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | Y

A

 	
 	A2CAdvantage (class in prl.agents.agents)

 	A2CAgent (class in prl.agents.agents)

 	act() (ActorCriticAgent method)

 	(Agent method)

 	(AgentABC method)

 	(CrossEntropyAgent method)

 	(DQNAgent method)

 	(REINFORCEAgent method)

 	(RandomAgent method)

 	action_space (Environment attribute)

 	(EnvironmentABC attribute)

 	action_space() (ActionTransformer method)

 	(ActionTransformerABC method)

 	(NoOpActionTransformer method)

 	
 	action_transformer (Environment attribute)

 	(EnvironmentABC attribute)

 	ActionTransformer (class in prl.transformers.action_transformers)

 	ActionTransformerABC (class in prl.typing)

 	ActorCriticAgent (class in prl.agents.agents)

 	add() (Logger method)

 	Advantage (class in prl.agents.agents)

 	AdvantageABC (class in prl.typing)

 	Agent (class in prl.agents.agents)

 	AgentABC (class in prl.typing)

 	AgentCallback (class in prl.callbacks.callbacks)

 	AgentCallbackABC (class in prl.typing)

B

 	
 	BaseAgentCheckpoint (class in prl.callbacks.callbacks)

 	
 	BLUE (colors attribute)

 	BOLD (colors attribute)

C

 	
 	calculate_advantages() (A2CAdvantage method)

 	(Advantage method)

 	(GAEAdvantage method)

 	calculate_returns (in module prl.storage.storage)

 	calculate_total_rewards (in module prl.storage.storage)

 	CallbackHandler (class in prl.callbacks.callbacks)

 	check_run_condition() (CallbackHandler static method)

 	
 	clear() (Memory method)

 	close() (Environment method)

 	(EnvironmentABC method)

 	colors (class in prl.utils.misc)

 	contains() (TransformedSpace method)

 	convert_to_pytorch() (PytorchFA method)

 	CrossEntropyAgent (class in prl.agents.agents)

D

 	
 	DQNAgent (class in prl.agents.agents)

 	
 	DQNLoss (class in prl.function_approximators.pytorch_nn)

E

 	
 	EarlyStopping (class in prl.callbacks.callbacks)

 	END_FORMAT (colors attribute)

 	
 	Environment (class in prl.environments.environments)

 	EnvironmentABC (class in prl.typing)

F

 	
 	flush() (Logger method)

 	forward() (DQNLoss method)

 	(PolicyGradientLoss method)

 	(PytorchConv method)

 	(PytorchMLP method)

 	(PytorchNet method)

 	(PytorchNetABC method)

 	
 	FrameSkipEnvironment (class in prl.environments.environments)

 	FunctionApproximator (class in prl.function_approximators.function_approximators)

 	FunctionApproximatorABC (class in prl.typing)

G

 	
 	GAEAdvantage (class in prl.agents.agents)

 	get_actions() (History method)

 	(HistoryABC method)

 	(Memory method)

 	(Storage method)

 	(StorageABC method)

 	get_data() (Logger method)

 	get_dones() (History method)

 	(HistoryABC method)

 	(Memory method)

 	(Storage method)

 	(StorageABC method)

 	get_last_state() (History method)

 	(HistoryABC method)

 	(Memory method)

 	(Storage method)

 	(StorageABC method)

 	get_number_of_episodes() (History method)

 	(HistoryABC method)

 	
 	get_returns() (History method)

 	(HistoryABC method)

 	get_rewards() (History method)

 	(HistoryABC method)

 	(Memory method)

 	(Storage method)

 	(StorageABC method)

 	get_states() (History method)

 	(HistoryABC method)

 	(Memory method)

 	(Storage method)

 	(StorageABC method)

 	get_summary() (History method)

 	(HistoryABC method)

 	get_total_rewards() (History method)

 	(HistoryABC method)

 	GREEN (colors attribute)

H

 	
 	History (class in prl.storage.storage)

 	
 	HistoryABC (class in prl.typing)

I

 	
 	id (ActionTransformer attribute)

 	(ActionTransformerABC attribute)

 	(ActorCriticAgent attribute)

 	(Agent attribute)

 	(AgentABC attribute)

 	(CrossEntropyAgent attribute)

 	(DQNAgent attribute)

 	(Environment attribute)

 	(EnvironmentABC attribute)

 	(FunctionApproximator attribute)

 	(FunctionApproximatorABC attribute)

 	(NoOpActionTransformer attribute)

 	(NoOpStateTransformer attribute)

 	(PongTransformer attribute)

 	(PytorchFA attribute)

 	(REINFORCEAgent attribute)

 	(RandomAgent attribute)

 	(RewardTransformer attribute)

 	(RewardTransformerABC attribute)

 	(StateShiftTransformer attribute)

 	(StateTransformer attribute)

 	(StateTransformerABC attribute)

 	
 	id() (NoOpRewardTransformer method)

 	(RewardShiftTransformer method)

L

 	
 	limited_deque() (in module prl.utils.loggers)

 	
 	Logger (class in prl.utils.loggers)

M

 	
 	Memory (class in prl.storage.storage)

 	
 	MemoryABC (in module prl.typing)

N

 	
 	new_state_update() (History method)

 	(HistoryABC method)

 	(Memory method)

 	(Storage method)

 	(StorageABC method)

 	
 	NoOpActionTransformer (class in prl.transformers.action_transformers)

 	NoOpRewardTransformer (class in prl.transformers.reward_transformers)

 	NoOpStateTransformer (class in prl.transformers.state_transformers)

O

 	
 	observation_space (Environment attribute)

 	(EnvironmentABC attribute)

 	on_iteration_end() (AgentCallback method)

 	(AgentCallbackABC method)

 	(BaseAgentCheckpoint method)

 	(CallbackHandler method)

 	(EarlyStopping method)

 	(TensorboardLogger method)

 	(TrainingLogger method)

 	(ValidationLogger method)

 	
 	on_training_begin() (AgentCallback method)

 	(AgentCallbackABC method)

 	(CallbackHandler method)

 	on_training_end() (AgentCallback method)

 	(AgentCallbackABC method)

 	(BaseAgentCheckpoint method)

 	(CallbackHandler method)

 	(TensorboardLogger method)

P

 	
 	play_episodes() (Agent method)

 	(AgentABC method)

 	play_steps() (Agent method)

 	(AgentABC method)

 	PolicyGradientLoss (class in prl.function_approximators.pytorch_nn)

 	PongTransformer (class in prl.transformers.state_transformers)

 	post_train_cleanup() (Agent method)

 	(AgentABC method)

 	pre_train_setup() (Agent method)

 	(AgentABC method)

 	(DQNAgent method)

 	(REINFORCEAgent method)

 	(RandomAgent method)

 	predict() (FunctionApproximator method)

 	(FunctionApproximatorABC method)

 	(PytorchConv method)

 	(PytorchFA method)

 	(PytorchMLP method)

 	(PytorchNet method)

 	(PytorchNetABC method)

 	prl (module)

 	prl.agents (module)

 	prl.agents.agents (module)

 	
 	prl.callbacks (module)

 	prl.callbacks.callbacks (module)

 	prl.environments (module)

 	prl.environments.environments (module)

 	prl.function_approximators (module)

 	prl.function_approximators.function_approximators (module)

 	prl.function_approximators.pytorch_nn (module)

 	prl.storage (module)

 	prl.storage.storage (module)

 	prl.transformers (module)

 	prl.transformers.action_transformers (module)

 	prl.transformers.reward_transformers (module)

 	prl.transformers.state_transformers (module)

 	prl.typing (module)

 	prl.utils (module)

 	prl.utils.loggers (module)

 	prl.utils.misc (module)

 	prl.utils.utils (module)

 	PyTorchAgentCheckpoint (class in prl.callbacks.callbacks)

 	PytorchConv (class in prl.function_approximators.pytorch_nn)

 	PytorchFA (class in prl.function_approximators.pytorch_nn)

 	PytorchMLP (class in prl.function_approximators.pytorch_nn)

 	PytorchNet (class in prl.function_approximators.pytorch_nn)

 	PytorchNetABC (class in prl.typing)

R

 	
 	RandomAgent (class in prl.agents.agents)

 	RED (colors attribute)

 	register() (Logger method)

 	REINFORCEAgent (class in prl.agents.agents)

 	reset() (ActionTransformer method)

 	(ActionTransformerABC method)

 	(Environment method)

 	(EnvironmentABC method)

 	(NoOpActionTransformer method)

 	(NoOpRewardTransformer method)

 	(NoOpStateTransformer method)

 	(PongTransformer method)

 	(RewardShiftTransformer method)

 	(RewardTransformer method)

 	(RewardTransformerABC method)

 	(StateShiftTransformer method)

 	(StateTransformer method)

 	(StateTransformerABC method)

 	(TimeShiftEnvironment method)

 	
 	reward_transformer (Environment attribute)

 	(EnvironmentABC attribute)

 	RewardShiftTransformer (class in prl.transformers.reward_transformers)

 	RewardTransformer (class in prl.transformers.reward_transformers)

 	RewardTransformerABC (class in prl.typing)

 	run_tests() (CallbackHandler method)

S

 	
 	sample() (TransformedSpace method)

 	sample_batch() (History method)

 	(HistoryABC method)

 	(Memory method)

 	(Storage method)

 	(StorageABC method)

 	save() (Logger method)

 	setup_callbacks() (CallbackHandler method)

 	state_history (Environment attribute)

 	(EnvironmentABC attribute)

 	
 	state_transformer (Environment attribute)

 	(EnvironmentABC attribute)

 	StateShiftTransformer (class in prl.transformers.state_transformers)

 	StateTransformer (class in prl.transformers.state_transformers)

 	StateTransformerABC (class in prl.typing)

 	step() (Environment method)

 	(EnvironmentABC method)

 	(FrameSkipEnvironment method)

 	(TimeShiftEnvironment method)

 	Storage (class in prl.storage.storage)

 	StorageABC (class in prl.typing)

T

 	
 	TensorboardLogger (class in prl.callbacks.callbacks)

 	test() (Agent method)

 	(AgentABC method)

 	timeit() (in module prl.utils.utils)

 	TimeLogger (class in prl.utils.loggers)

 	TimeShiftEnvironment (class in prl.environments.environments)

 	train() (Agent method)

 	(AgentABC method)

 	(FunctionApproximator method)

 	(FunctionApproximatorABC method)

 	(PytorchFA method)

 	train_iteration() (ActorCriticAgent method)

 	(Agent method)

 	(AgentABC method)

 	(CrossEntropyAgent method)

 	(DQNAgent method)

 	(REINFORCEAgent method)

 	(RandomAgent method)

 	
 	TrainingLogger (class in prl.callbacks.callbacks)

 	transform() (ActionTransformer method)

 	(ActionTransformerABC method)

 	(NoOpActionTransformer method)

 	(NoOpRewardTransformer method)

 	(NoOpStateTransformer method)

 	(PongTransformer method)

 	(RewardShiftTransformer method)

 	(RewardTransformer method)

 	(RewardTransformerABC method)

 	(StateShiftTransformer method)

 	(StateTransformer method)

 	(StateTransformerABC method)

 	TransformedSpace (class in prl.environments.environments)

U

 	
 	UNDERLINE (colors attribute)

 	update() (History method)

 	(HistoryABC method)

 	(Memory method)

 	(Storage method)

 	(StorageABC method)

V

 	
 	ValidationLogger (class in prl.callbacks.callbacks)

Y

 	
 	YELLOW (colors attribute)

People’s Reinforcement Learning (PRL)

[image:]
 [https://img.shields.io/badge/python-3.6-blue.svg][image:]
 [https://img.shields.io/badge/code%20style-black-000000.svg][image:]
 [https://readthedocs.org/projects/prl/badge/?version=latest]
Description

Our main goal is to build a useful tool for the reinforcement learning researchers.

While using PRL library for building agents and conducting experiments you
can focus on a structure of an agent, state transformations, neural networks
architecture, action transformations and reward shaping. Time and memory profiling,
logging, agent-environment interactions, agent state saving,
neural network training, early stopping or training visualization
happens automatically behind the scenes. You are also provided
with very useful tools for handling training history and preparing training sets for
neural networks.

System requirements

	python 3.6

	swig

We recommend using virtualenv for installing project dependencies.

Installation

	clone the project:

git clone git@gitlab.com:opium-sh/prl.git

	create and activate a virtualenv for the project (you can skip this step if you are not using virtualenv)

virtualenv -p python3.6 your/path && source your/path/bin/activate

	install dependencies:

pip install -r requirements.txt

	install library

pip install -e .

	run example:

cd examples
python cart_pole_example_cross_entropy.py

Overall structure

Two main classes in PRL are Agent and Environment class.

One of the main goals while building PRL framework was to make Agent implementations
as clear and compact as they can be. All the state, reward and action transformations are
within Environment class, which wraps inside Gym-like environment.
Agent and Environment class can use Storage objects to easily manage training history
in order to transform states and create training sets for neural networks.
Neural networks are also wrapped within FunctionApproximator class, which provides
the user with unified API. All the networks are implemented in PyTorch and all the
data transformations outside the networks are written using NumPy and Numba.

Neural networks packed within FunctionApproximators class can be easily transferred
between different agents, so you can pretrain a policy using one algorithm
(using imitation learning for example) and then
use it in another agent implementing another training algorithm (e.g. actor-critic).

Environment

prl.environment

Environment class is the base class for the PRL environments. It preserves OpenAi Gym
API with some minor exceptions. Environment wraps the OpenAi Gym environment inside
and have placeholders for state, action and reward transformer objects.
It also tracks the history of currently played episode. Classes inheriting from
Environment are GymEnvironment, TimeShiftEnvironment and FrameSkipEnvironment.

Transformers can use the history of an episode to transform current observation
from Gym env to state representation required by agent, so transformer objects
can be implemented as stateless functions if it is convenient for the user.
States, actions and rewards stored in the episode history are in the raw form
(before any transformations).

For now, only environments with discrete action spaces and observations being
np.ndarray are supported.

State transformers

prl.transformers.state_transformers

State transformers are used by the environment to change observations to state
representation for function approximators used by the agent. To build your own
transformer all you need is to create a class inheriting from prl.core.StateTransformer
class and implement transform and reset methods. Transform method takes two arguments: state
in a form of np.ndarray and episode history. It returns a state represented also
by np.ndarray. reset method resets transformer state (if any) between episodes.
You can make your transformation fittable to the data by implementing fit
method in the same manner as in the scikit-learn library.

It is important to use only NumPy functions while implementing transformers for the
sake of performance. More advanced Python programmers can use
Numba [http://numba.pydata.org/] library to speed
up their transformers even more. Very good and deep NumPy tutorial can be found
here [https://www.labri.fr/perso/nrougier/from-python-to-numpy/].

You can check the performance of your transformations by importing and using print
function on prl.utils.time_logger object at the end of your program.

Reward transformers

prl.transformers.reward_transformers

If you want to make your own reward shaping transformer you need to inherit
from prl.core.RewardTransformer and perform analogous steps as in the state
transformer case.

Action transformers

prl.transformers.action_transformers

While implementing the action transformer you need to inherit your class from
prl.core.ActionTransformer, implement reset, transform and fit method.
After that you have to assign a gym.Space object to the action_space attribute,
because it cannot be automatically inferred only from the class implementation.

Storage

Classes for storage are created for easy management of the training history.

History

prl.core.History

History class is used to keep the episodes history. You can get actions,
states, rewards and done flag from it. It also gives user methods to prepare array
with returns, count total rewards or sample a batch for
neural network training. You can concatenate two history objects by using inplace add
operator +=.

Because appending to an np.ndarray (used to store data) is a very expensive operation, the History object
allocates in advance some bigger arrays, and doubles it’s size when arrays
are full. You can set the initial length of a History object during
initialization (e.g. Environment does it based on expected_episode_length parameter).

Memory

prl.core.Memory

Class similar to History created to be used as a replay buffer. It does not have to
keep complete episodes, so it’s API has less methods than History. It’s length is
constant and it is set during object initialization. You can’t concatenate two Memory
objects or calculate total rewards.

Function approximators

prl.function_approximators

Function approximators (FA) are created to deliver unified API for any kind of function approximators
used by RL algorithms. FA have two methods: train and predict and are implemented in
PyTorch [https://pytorch.org/] for now.

PytorchNN

prl.function_approximators.PytorchNN

PyTorch implementation of function approximator. It needs three arguments to
initialize: PytorchNet object, loss and optimizer. Loss and optimizers can be
imported directly from PyTorch. PytorchNet class is similar to torch.nn.Module
but with additional method predict.

PytorchNet

prl.function_approximators.pytorch_nn

Some neural networks and losses implementations used for RL problems
are kept in this module.

Callbacks

prl.callbacks

You can pass some callbacks to the agent train method to control and supervise the training.
Some of the implemented callbacks are: TensorboardLogger to log training statistics to
tensorboardX, EarlyStopping, PyTorchAgentCheckpoint, TrainingLogger, ValidationLogger.

Loggers and profiling

prl.utils

User and agents have access to five loggers. Most of them are used automatically. These
loggers are:

	time_logger - this logger is used to monitor execution time of many functions and methods.
You can print this object to generate report of execution times. If you want to profile
your function you can decorate your function with prl.utils.timeit decorator. From
now on, the execution time of this function will be logged.

	memory_logger - logger is used to monitor RAM usage (currently unused).

	agent_logger - this logger is used to monitor agent training statistics.

	nn_logger - in this logger all the statistics from neural network training
are stored. It is important to pass some distinct id argument to each network
during initialization when training agent with many networks. This id will be
used as a key in the logger.

	misc_logger - logger for the user statistics. They are captured by the
TensorboardLogger and plotted in the browser. You can log only numbers (ints or floats)
with a string key using add method.

Agents

prl.agents

And finally the agents! Thanks to the above classes the agent implementations in
PRL are simple and compact. While implementing the agent all you need to do is
to implement act, train_iteration and __init__ method. train_iteration
is a base step in agent training (e.g. one step in environment for DQN or
some number of complete episodes in REINFORCE agent). You can also implement
pre_train_setup and post_train_cleanup methods if needed. They are called
before and after main training loop.

act method is called by the agent while making one step in the environment. Agent
have also methods inherited from base Agent class like: play_episodes and
play_steps and test which can be used within train_iteration method.

train method should be used only to initialize training from outside the agent.

Example agent code looks like this:

class CrossEntropyAgent(Agent):
 """Agent using cross entropy algorithm"""

 def __init__(self, policy_network: FunctionApproximatorABC, agent_id: str = "crossentropy_agent"):
 super().__init__()
 self._id = agent_id
 self.action_space = None
 self.policy_network = policy_network

 @property
 def id(self):
 return self._id

 @timeit
 def train_iteration(self, env: EnvironmentABC, n_episodes=32, percentile=75):
 history = self.play_episodes(env, n_episodes)
 all_total_rewards = history.get_total_rewards()
 total_rewards = all_total_rewards[history.get_dones()]
 total_reward_bound = np.percentile(total_rewards, percentile)
 above_treshold_mask = all_total_rewards >= total_reward_bound
 states = history.get_states()[above_treshold_mask]
 actions = history.get_actions()[above_treshold_mask]
 loss = self.policy_network.train(states, actions)
 return loss, history

 def act(self, state: Observation) -> Action:
 state = state.reshape(1, *state.shape)
 act_probs = self.policy_network.predict(state)[0]
 return np.random.choice(len(act_probs), p=act_probs)

Example

Let’s take a look how to execute full RL experiment in PRL. After this tutorial
the code should be self-explanatory in most parts.

import gym
import numpy as np
from torch import nn
from torch import optim
from prl.agents import CrossEntropyAgent
from prl.callbacks import TrainingLogger, EarlyStopping
from prl.environment import GymEnvironment
from prl.function_approximators import PytorchNN
from prl.function_approximators.pytorch_nn import PytorchMLP
from prl.transformers.reward_transformers import RewardShiftTransformer
from prl.transformers.state_transformers import StateShiftTransformer
from prl.utils import time_logger

gym_env = gym.make("CartPole-v0")
obs_shape = gym_env.observation_space.shape
state_transformer = StateShiftTransformer(np.zeros(obs_shape) - 0.5)
reward_transformer = RewardShiftTransformer(-0.5)

env = GymEnvironment(
 gym_env, state_transformer=state_transformer, reward_transformer=reward_transformer
)
y_size = env.action_space.n
net = PytorchMLP(
 x_shape=env.observation_space.shape,
 hidden_sizes=[128],
 output_activation=nn.Softmax(dim=1),
 y_size=y_size,
)

optimizer = optim.Adam(params=net.parameters(), lr=0.01)
loss = nn.CrossEntropyLoss()
policy_network = PytorchNN(net=net, loss=loss, optimizer=optimizer)
agent = CrossEntropyAgent(policy_network=policy_network)

callbacks = [
 EarlyStopping(target_reward=150, iteration_interval=5, number_of_test_runs=5),
 TrainingLogger(on_screen=True, iteration_interval=1),
]

agent.train(
 env, n_iterations=100, n_episodes=32, percentile=90, callback_list=callbacks
)

print(time_logger)
time_logger.save("./time_logger.pkl")

Final remarks

The framework is under heavy development and can change in time. If you encounter
any problems with library, documentation or this tutorial please report it to us
at piotr.tempczyk [at] opium.sh . If you want
to implement you agent and contribute to PRL we encourage you to do so.
Just create a pull request :)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to People’s Reinforcement Learning (PRL) documentation!

_static/up-pressed.png

_static/up.png

